Bulletin of Experimental Biology and Medicine

, Volume 141, Issue 4, pp 524–529 | Cite as

Expression of regulatory T-lymphocyte phenotype in human fetal hemopoietic and lymphoid cell culture

  • N. I. Sharova
  • A. D. Donetskova
  • I. V. Dubrovina
  • G. T. Sukhikh
  • A. A. Yarilin
Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)

Abstract

Cells with regulatory T-cell phenotype (Treg, CD4+CD25hi) were not detected in human fetal thymus, liver, bone marrow, spleen, and among blood mononuclears of 14–28-week gestation. The cells of the majority of these fetal thymuses express Treg specific marker (FOXP3 transcription marker) gene. Culturing of fetal liver and bone marrow cells on a monolayer of thymic epithelial cells induced expression of FOXP3 gene, but induction of CD4+CD25+ membrane phenotype was detected in only 1 of 8 studied cultures (in liver and bone marrow cells). Induction of Treg differentiation is to a greater extent determined by the characteristics of hemopoietic organ cells than of thymic epithelial cells.

Key Words

regulatory T cells thymic epithelium fetal hemopoietic organs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. Litvina, N. I. Sharova, A. Kh. Dzutsev, and A. A. Yarilin, Immunologiya, 25, No. 1, 8–13 (2004).Google Scholar
  2. 2.
    I. S. Freidlin, Med. Immunol., 4, 347–354 (2005)Google Scholar
  3. 3.
    A. A. Yarilin and A. D. Donetskova, Ros. Allergol. Zh., No. 2, 22–26 (2005).Google Scholar
  4. 4.
    C. Baecher-Allan, E. Wolf, and D. A. Hafler, Clin. Immunol., 115, 10–18 (2005).PubMedCrossRefGoogle Scholar
  5. 5.
    J. A. Bluestone, Nat. Rev. Immunol., 5, 343–349 (2005).PubMedCrossRefGoogle Scholar
  6. 6.
    G. Darrasse-Jeze, G. Marodon, B. L. Salomon, et al., Blood, 105, 4715–4721 (2005).PubMedCrossRefGoogle Scholar
  7. 7.
    J. D. Fontenot, M. A. Gavin, and A. Y. Rudensky, Nat. Immunol., 4, 330–336 (2003).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Hori, T. Nomura, and S. Sakaguchi, Science, 299, 1057–1061 (2004).CrossRefGoogle Scholar
  9. 9.
    S. Liang, P. Alard, Y. Zhao, et al., J. Exp. Med., 201, 127–137 (2005).PubMedCrossRefGoogle Scholar
  10. 10.
    C. C. Picca and A. J. Caton, Curr. Opin. Immunol., 17, 131–136 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    A. L. Putnam, F. Vendrame, F. Dotta, and P. A. Gottlieb, J. Autoimmun., 24, 55–62 (2005).PubMedCrossRefGoogle Scholar
  12. 12.
    S. Sakaguchi, Annu. Rev. Immunol., 22, 531–562 (2004).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Sakaguchi, N. Sakaguchi, M. Asano, et al., J. Immunol., 155, 1151–1164 (1995).PubMedGoogle Scholar
  14. 14.
    T. Takahashi, Y. Kuniyasu, M. Toda, et al., Int. Immunol., 10, 1969–1980 (1998).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Walker, D. Kasprowicz, V. Gersuk, et al., J. Clin. Invest., 112, 1437–1443 (2003).PubMedCrossRefGoogle Scholar
  16. 16.
    N. Watanabe, Y. H. Wang, H. K. Lee, et al., Nature, 436, 1181–1185 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • N. I. Sharova
    • 1
  • A. D. Donetskova
    • 1
  • I. V. Dubrovina
    • 2
  • G. T. Sukhikh
    • 2
  • A. A. Yarilin
    • 1
  1. 1.Institute of ImmunologyFMBARussia
  2. 2.National Center of Obstetrics, Gynecology, and PerinatologyRussian Academy of Medical SciencesMoscow

Personalised recommendations