Bulletin of Experimental Biology and Medicine

, Volume 141, Issue 4, pp 493–499 | Cite as

Myogenesis in hemopoietic tissue mesenchymal stem cell culture

  • S. N. Gornostaeva
  • A. A. Rzhaninova
  • D. V. Gol’dstein
Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)


The myogenic differentiation capacity of prenatal mesenchymal stem cells from the main sites of hemopoiesis (bone marrow, thymus, liver, and spleen) was studied. Myogenesis was observed in all studied cell cultures except splenic mesenchymal stem cells. Differentiating cells from the thymus, bone marrow, and liver were positively stained for skeletal muscle markers (myogenin and MyoD). Autonomously contracting structures positively stained for cardiotroponin I and slow muscle myosin, were detected in the same cultures. Our experiments revealed differences in differentiation of mesenchymal stem cells from hemopoietic organs depending on the source of cells.

Key Words

mesenchymal stem cells myogenesis; differentiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Rzhaninova, S. N. Gornostaeva, D. V. Gol’dstein, et al., Byull. Nauch. Tsentra im. Bakuleva, 5, No. 5, 314 (2004).Google Scholar
  2. 2.
    A. A. Rzhaninova, S. N. Gornostaeva, and D. V. Gol’dstein, Kletoch. Tekhnol. Biol. Med., No. 1, 34–41 (2005).Google Scholar
  3. 3.
    H. A. Awad, D. L. Butler, G. P. Boivin, et al., Tissue Eng., 5, 267–277 (1999).PubMedGoogle Scholar
  4. 4.
    S. P. Bruder, A. A. Kurth, M. Shea, et al., J. Orthop. Res., 16, 155–162 (1998).PubMedCrossRefGoogle Scholar
  5. 5.
    S. C. Choi, J. Yoon, W. J. Shim, et al., Exp. pMol. Med., 36, No. 6, 515–523 (2004).Google Scholar
  6. 6.
    J. E. Dennis, A. Merriam, A. Awadallah, et al., J. Bone Miner. Res., 14, 700–709 (1999).PubMedCrossRefGoogle Scholar
  7. 7.
    A. J. Friedenstein, N. N. Kulagina, et al., Exp. Hematology, 2, 83–92 (1974).Google Scholar
  8. 8.
    K. Fukuda and J. Fujita, Kidney Int., 68, No. 5, 1940–1943 (2005).PubMedCrossRefGoogle Scholar
  9. 9.
    Y. Iijima, T. Nagai, M. Mizukami, et al., FASEB J., 17, No. 10, 1361–1363 (2003).PubMedGoogle Scholar
  10. 10.
    S. Makino, K. Fukuda, S. Miyoshi, et al., J. Clin. Invest., 103, No. 5, 697–705 (1999).PubMedCrossRefGoogle Scholar
  11. 11.
    C. Mummery, D. Ward-van Oostwaard, P. Doevendans, et al., Circulation, 107, No. 21, 2733–2740 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    L. A. Sabourin and M. A. Rudnicki, Clin. Genet., 57, No. 1, 16–25 (2000).PubMedCrossRefGoogle Scholar
  13. 13.
    W. S. Shim, S. Jiang, P. Wong, et al., Biochem. Biophys. Res. Commun., 324, No. 2, 481–488 (2004).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. N. Gornostaeva
    • 1
  • A. A. Rzhaninova
    • 1
  • D. V. Gol’dstein
    • 1
    • 2
  1. 1.Institute of Stem Cell and Cell TechnologiesMoscow
  2. 2.ReMeTeksMoscow

Personalised recommendations