Bulletin of Experimental Biology and Medicine

, Volume 141, Issue 1, pp 124–128

Cardiac contractility after transplantation of autologous mononuclear bone marrow cells in patients with myocardial infarction

  • V. V. Ryabov
  • A. L. Krylov
  • Yu. S. Poponina
  • L. N. Maslov
Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)


Autologous bone marrow mononuclear cells were transplanted by intracoronary infusion to patients with myocardial infarction after recovery of coronary perfusion. Controls received traditional therapy alone. Echocardiography was carried out before and 3 and 6 months after cell therapy. Cell transplantation did not appreciably improved left-ventricular contractility in comparison with the control group. In none patient cell therapy provoked malignant ventricular arrhythmias. Intracoronary infusion of bone marrow mononuclear cells in patients with myocardial infarction did not improve cardiac contractility and did not aggravate the course of the disease.

Key Words

myocardial infarction transplantation bone marrow mononuclear cells cardiac contractility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. A. Bokeriya, Yu. I. Buziashvili, S. T. Maktseplishvili, and D. Kh. Kamardinov, Kardiologiya, No. 9, 16–22 (2004).Google Scholar
  2. 2.
    G. E. Gendlin, E. V. Samsonova, and O. V. Bukhalo, Serdechn. Nedostat., 1, No. 2, 44–54 (2000).Google Scholar
  3. 3.
    L. N. Maslov, V. V. Ryabov, and S. I. Sazonova, Vestn. Transplantol. Iskusstv. Organov, No. 4, 78–86 (2003).Google Scholar
  4. 4.
    L. N. Maslov, V. V. Ryabov, and S. I. Sazonova, Uspekhi Fiziol. Nauk, 35, No. 3, 50–60 (2004).Google Scholar
  5. 5.
    V. S. Repin, Patogenez, No. 1, 9–20 (2004).Google Scholar
  6. 6.
    B. Assmus, V. Schachinger, C. Teupe, et al., Circulation, 106, No. 24, 3009–3017 (2002).CrossRefPubMedGoogle Scholar
  7. 7.
    A. P. Beltrami, K. Urbanek, J. Kajstura, et al., N. Engl. J. Med., 344, No. 23, 1750–1757 (2001).CrossRefPubMedGoogle Scholar
  8. 8.
    M. B. Britten, N. D. Abolmaali, B. Assmus, et al., Circulation, 108, No. 18, 2212–2218 (2003).CrossRefPubMedGoogle Scholar
  9. 9.
    A. Deten, H. C. Volz, S. Clamors, et al., Cardiovasc. Res., 65, No. 1, 52–63 (2005).CrossRefPubMedGoogle Scholar
  10. 10.
    N. Dobert, M. Britten, B. Assmus, et al., Eur. J. Nucl. Med. Mol. Imaging, 31, No. 8, 1146–1151 (2004).PubMedGoogle Scholar
  11. 11.
    N. Hattan, H. Kawaguchi, K. Ando, et al., Cardiovasc. Res., 65, No. 2, 334–344 (2005).CrossRefPubMedGoogle Scholar
  12. 12.
    P. Menasche, A. A. Hagege, J. T. Vilquin, et al., J. Am. Coll. Cardiol., 41, No. 7, 1078–1083 (2003).CrossRefPubMedGoogle Scholar
  13. 13.
    F. Quani, E. Cigola, C. Lagrasta, et al., Circ. Res., 75., 1050–1063 (1994).Google Scholar
  14. 14.
    B. E. Strauer, M. Brehm, T. Zeus, et al., Circulation, 106, 1913–1918 (2002).CrossRefPubMedGoogle Scholar
  15. 15.
    G. S. Wagner, C. J. Freye, S. T. Palmeri, et al., Circulation, 65, No. 2, 342–347 (1982).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. V. Ryabov
    • 1
  • A. L. Krylov
    • 1
  • Yu. S. Poponina
    • 1
  • L. N. Maslov
    • 1
  1. 1.Institute of Cardiology, Tomsk Research CenterSiberian Division of Russian Academy of Medical SciencesRussia

Personalised recommendations