Bulletin of Experimental Biology and Medicine

, Volume 141, Issue 1, pp 26–29 | Cite as

Short-term cold exposure improves antioxidant status and general resistance of animals

  • M. Ya. Akhalaya
  • A. G. Platonov
  • A. A. Baizhumanov
Biophysics and Biochemistry

Abstract

We studied the effect of short-term swimming in cold water (13°C) on parameters of the blood antioxidant system (activities of superoxide dismutase and catalase, concentrations of ceruloplasmin and nonprotein thiols), heme oxygenase activity, and nonprotein thiol level in mouse liver. The test parameters of antioxidant protection increased 1 h after cold exposure and remained high 1 day after treatment. These changes were accompanied by an increase in the adaptive capacity. After swimming in cold water the resistance of animals to another stress factor (administration of epinephrine) was higher compared to controls.

Key Words

cold stress superoxide dismutase ceruloplasmin catalase nonprotein thiols 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. B. Gavrilov, A. P. Gavrilova, and L. M. Mazhul’, Vopr. Med. Khim., 33, No. 1, 118–122 (1987).PubMedGoogle Scholar
  2. 2.
    V. A. Kostyuk, A. I. Potapovich, and Zh. B. Kovaleva, Ibid., 36, No. 2, 89–91 (1990).Google Scholar
  3. 3.
    T. G. Sazontova and Yu. V. Arkhipenko, Fiziol. Zh., 91, No. 6, 636–655 (2005).Google Scholar
  4. 4.
    O. B. Siverina, V. V. Basevich, R. V. Basova, et al., Lab. Delo, No. 10, 612–618 (1986).Google Scholar
  5. 5.
    S. Chevari, T. Andyal, and Ya. Shprenger, Ibid., No. 10, 9–13 (1991).Google Scholar
  6. 6.
    L. A. Applegate, P. Luscher, and R. M. Tyrrell, Cancer Res., 51, No. 3, 974–978 (1991).PubMedGoogle Scholar
  7. 7.
    M. W. Fraaije, H. P. Roubroeks, W. R. Hagen, and W. J. Van Berkel, Eur. J. Biochem., 235, 192–198 (1996).CrossRefPubMedGoogle Scholar
  8. 8.
    B. Halliwell and J. M. Gutteridge, Arch. Biochem. Biophys., 280, No. 1, 1–8 (1990).CrossRefPubMedGoogle Scholar
  9. 9.
    S. M. Keyse and R. M. Tyrrell, Proc. Natl. Acad. Sci. USA, 86, No. 1, 99–103 (1989).PubMedGoogle Scholar
  10. 10.
    L. K. Moran, J. M. Gutteridge, and G. J. Quinlan, Curr. Med. Chem., 8, No. 7, 763–772 (2001).PubMedGoogle Scholar
  11. 11.
    I. Rahman and W. MacNee, Free Radic. Biol. Med., 28, No. 9, 1405–1420 (2000).CrossRefPubMedGoogle Scholar
  12. 12.
    S. W. Ryter, E. Kvam, and R. M. Tyrrell, Methods Mol. Biol., 99, 369–391 (2000).PubMedGoogle Scholar
  13. 13.
    G. R. Schacterle and R. L. Pollack, Anal. Biochem., 51, No. 2, 654–655 (1973).CrossRefPubMedGoogle Scholar
  14. 14.
    J. Sedlak and R. H. Lindsay, Ibid., 25, No. 1, 192–205 (1968).PubMedGoogle Scholar
  15. 15.
    K. Yoshida, K. Kaneko, H. Miyajima, et al., J. Neurol. Sci., 175, 91–95 (2000).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. Ya. Akhalaya
    • 1
  • A. G. Platonov
    • 1
  • A. A. Baizhumanov
    • 1
  1. 1.Laboratory of Radiation Biophysics, Department of Biophysics, Biological FacultyM. V. Lomonosov Moscow State UniversityRussia

Personalised recommendations