Bulletin of Experimental Biology and Medicine

, Volume 139, Issue 4, pp 481–490

Whether Modern Cell Technologies Can Break Down Biological Limitations of Tissue-Specific Regeneration of the Myocardium

  • L. M. Nepomnyashchikh
  • E. L. Lushnikova
  • D.V. Goldshtein
Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)

Abstract

The paper reviews modern concepts of physiological and reparative regeneration of the myocardium as a highly specific and highly differentiated tissue system. Special attention was given to evaluation of the proliferative potential of cardiomyocytes, in particular, to the existence of a population of resident cardiac stem cells in the myocardium. Modern approaches to replenishment of massive cardiomyocyte loss via transplantation and transdifferentiation of adult and embryonic stem cells are discussed and the possibilities of using cell technologies for induction of tissue-specific regeneration of the myocardium are analyzed.

Key Words

myocardial regeneration cardiomyocyte proliferation stem cells transdifferentiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Yu. N. Belenkov, F. T. Ageev, B. Yu. Mareev, and V. G. Savchenko, Kardiologiya, No. 3, 7–12 (2003).Google Scholar
  2. 2.
    L. A. Bokeriya, Yu. I. Buziashvili, S. T. Matskeplishvili, and D. Kh. Kamardinov, Ibid., No. 9, 16–22 (2004).Google Scholar
  3. 3.
    V. Ya. Brodskii, Byull. Eksp. Biol Med., 119, No. 5, 454–459 (1995).Google Scholar
  4. 4.
    A. E. Vermel’, Klin. Med., No. 1, 5–11 (2004).Google Scholar
  5. 5.
    I. A. Grivennikov and A. A. Shkumatov, Probl. Reproduktsii, No. 3, 16–25 (2002).Google Scholar
  6. 6.
    V. V. Egorov, A. A. Ivanov, and M. A. Pal’tsev, Molek. Med., No. 2, 3–13 (2003).Google Scholar
  7. 7.
    E. L. Lushnikova, M. G. Klinnikova, O. P. Molodykh, and L. M. Nepomnyashchikh, Byull. Eksp. Biol. Med., 138, No.12, 684–689 (2004).Google Scholar
  8. 8.
    E. L. Lushnikova, L. M. Nepomnyashchikh, and M. G. Klinnikova, Ibid., 132, No.12, 685–691 (2001).Google Scholar
  9. 9.
    E. L. Lushnikova, L. M. Nepomnyashchikh, and V. D. Rozenberg, Morphological, Molecular, and Genetic Bases of Dilated Cardiomyopathy [in Russian], Moscow (2004).Google Scholar
  10. 10.
    L. N. Maslov, V. V. Ryabov, and S. I. Sazonova, Vestn. Transplantol. Iskusstv. Organov, No. 4, 78–86 (2003).Google Scholar
  11. 11.
    L. N. Maslov, V. V. Ryabov, and S. I. Sazonova, Uspechi Fiziol. Nauk., No. 3. 50–60 (2004).Google Scholar
  12. 12.
    N. V. Naryzhnaya, E. V. Krivoshchekov, and Yu. B. Lishmanov, Vopr. Med. Khimii, 46, No.2, 127–134 (2000).PubMedGoogle Scholar
  13. 13.
    L. M. Nepomnyashchikh, Byull. Eksp. Biol. Med., 121, No.1, 4–13 (1996).Google Scholar
  14. 14.
    L. M. Nepomnyashchikh, Ibid., 131, No.1, 11–21 (2001).Google Scholar
  15. 15.
    L. M. Nepomnyashchikh, E. L. Lushnikova, and G. I. Nepomnyashchikh, Morphometry and Stereology and Heart Hypertrophy [in Russian], Novosibirsk (1986).Google Scholar
  16. 16.
    L. M. Nepomnyashchikh, E. L. Lushnikova, and D. E. Semenov, Regenerative and Plastic Cardiac Insufficiency: Morphological Bases and Molecular Mechanisms [in Russian], Moscow (2003).Google Scholar
  17. 17.
    L. V. Polezhaev, Uspekhi Sovrem. Biol., 3, 196–211 (1994).Google Scholar
  18. 18.
    I. V. Potapov, M. E. Krasheninnikov, and N. A. Onishchenko, Vestn. Transplantol. Iskusstv. Organov, No. 3, 52–61 (2001).Google Scholar
  19. 19.
    V. S. Repin, Klin. Gerontol., No. 12, 29–36 (2001).Google Scholar
  20. 20.
    V. S. Repin, Patol. Fiziol. Eksp. Ter., No. 2, 3–7 (2001).Google Scholar
  21. 21.
    V. S. Repin and G. T. Sukhikh, Medical Cell Biology [in Russian], Moscow (1998).Google Scholar
  22. 22.
    V. D. Rozenberg and L. M. Nepomnyashchikh, Pathological Anatomy of Postinfarction Heart Remodeling [in Russian], Moscow (2002).Google Scholar
  23. 23.
    V. D. Rozenberg and L. M. Nepomnyashchikh, Dilated Cardiomyopathy: General Pathology and Pathophysiology [in Russian], Moscow (2004).Google Scholar
  24. 24.
    P. P. Rumyantsev, Cardiomyocytes in Reproduction, Differentiation, and Regeneration Processes [in Rusasian], Leningrad (1982).Google Scholar
  25. 25.
    D. S. Sarkisov, Structural Bases of Adaptation and Compensation of Impaired Functions [in Russian], Moscow (1987).Google Scholar
  26. 26.
    G. T. Sukhikh, V. V. Malaitsev, I. M. Bogdanova, and I. V. Dubrovina, Byull. Eksp. Biol. Med., 133, No.2, 124–131 (2002).Google Scholar
  27. 27.
    I. V. Uryvaeva, Ibid., 124, No.10, 364–368 (1997).Google Scholar
  28. 28.
    I. V. Uryvaeva, Isv. Akad. Nauk, Ser. Biol., No. 6, 728–737 (2001).Google Scholar
  29. 29.
    I. L. Chertkov and N. N. Drize, Ter. Arkhiv, No. 7, 5–11 (2004).Google Scholar
  30. 30.
    I. L. Chertkov and A. Ya. Fridenshtein, Cellular Bases of Hemopoiesis (Hemopoietic Stem Cells) [in Russian], Moscow (1977).Google Scholar
  31. 31.
    Yu. L. Shevchenko, Vestn. Ros. Akad. Med. Nauk, No. 11, 6–9 (2003).Google Scholar
  32. 32.
    J. D. Abbott, Y. Huang, D. Liu, et al., Circulation, 110, 3300–3305 (2004).PubMedGoogle Scholar
  33. 33.
    Y. Adachi, J. Imagawa, Y. Suzuki, et al., J. Mol. Cell. Cardiol., 36, 707–710 (2004)CrossRefPubMedGoogle Scholar
  34. 34.
    P. Anversa, B. Hiler, R. Ricci, et al., J. Am. Coll. Cardiol., 8, 1441–1448. (1986).PubMedGoogle Scholar
  35. 35.
    P. Anversa and J. Kajstura, Circ. Res., 83, 1–14 (1998).PubMedGoogle Scholar
  36. 36.
    P. Anversa, B. Nadal-Ginard, Nature, 415, 240–243 (2002).CrossRefPubMedGoogle Scholar
  37. 37.
    I. M. Barbash, P. Chouraqui, J. Baron, et al., Circulation, 108, 863–868 (2003).CrossRefPubMedGoogle Scholar
  38. 38.
    A. Behfar, L. V. Zingman, D. M. Hodgson, et al., FASEB J., 16, 1558–1566 (2002).CrossRefPubMedGoogle Scholar
  39. 39.
    A. P. Beltrami, L. Barlucchi, D. Torella, et al., Cell, 114, 763–776 (2003).CrossRefPubMedGoogle Scholar
  40. 40.
    A. P. Beltrami, K. Urbanek, J. Kajsrura, et al., N. Engl. J. Med., 344, 1750–1757 (2001).CrossRefPubMedGoogle Scholar
  41. 41.
    D. W. Benson, G. M. Silberbach, A. Kavanaugh-McHugh, et al., J. Clin. Invest., 104, 1567–1573 (1999).PubMedGoogle Scholar
  42. 42.
    D. M. Bodine, N. E. Seidel, M. S. Gale, et al., Blood, 84, 1482–1491 (1994)PubMedGoogle Scholar
  43. 43.
    T. Brazelton, F. M. Rossi, G. I. Keshet, and H. M. Blau, Science, 290, 1775–1779 (2000).CrossRefPubMedGoogle Scholar
  44. 44.
    W. Brenner, A. Aicher, T. Eckey, et al., J. Nucl. Med., 45, 512–518 (2004).PubMedGoogle Scholar
  45. 45.
    C. Chimenti, J. Kajstura, D. Torella, et al., Circ. Res., 93, 604–613 (2003).CrossRefPubMedGoogle Scholar
  46. 46.
    M. A. Eglitis and E. Mezey, Proc. Natl. Acad. Sci. USA, 94, 4080–4085 (1997).CrossRefPubMedGoogle Scholar
  47. 47.
    G. Ferrari, G. Cusella-De Angelis, M. Coletta, et al., Science, 279, 1528–1530 (1998).CrossRefPubMedGoogle Scholar
  48. 48.
    G. D. Fischbach and R. L. Fischbach, J. Clin. Invest., 114, 1364–1370 (2004).CrossRefPubMedGoogle Scholar
  49. 49.
    N. G. Frangogiannis, J. L. Perrard, L. H. Mendoza, et al., Circulation, 98, 687–698 (1998).PubMedGoogle Scholar
  50. 50.
    S. Fukuhara, S. Tomita, S. Yamashiro, et al., J. Thorac. Cardiovasc. Surg., 125, 1470–1480 (2003).CrossRefPubMedGoogle Scholar
  51. 51.
    A. M. Gewirtz, D. L. Sokol, and M. Z. Ratajczak, Blood, 92, 712–736 (1998).PubMedGoogle Scholar
  52. 52.
    C. Grepin, L. Robitaille, T. Antakly, and M. Nemer, Mol. Cell. Biol., 15, 4095–4102 (1995).PubMedGoogle Scholar
  53. 53.
    J.-Q. He, Y. Ma, Y. Lee, et al., Circ. Res., 93, 32–39 (2003).CrossRefPubMedGoogle Scholar
  54. 54.
    E. D. Israels and L. G. Israels, Stem Cells, 19, 88–91 (2001).CrossRefPubMedGoogle Scholar
  55. 55.
    K. A. Jackson, S. M. Majka, H. Wang, et al., J. Clin Invest., 107, 1395–1402 (2001).PubMedGoogle Scholar
  56. 56.
    M. Jankowski, B. Danalache, D. Wang, et al., Proc. Natl. Acad. Sci. USA, 101, 13 074–13 079 (2004).CrossRefGoogle Scholar
  57. 57.
    J. Kajstura, A. Leri, N. Finato, et al., Ibid., 95, 8801–8805 (1998).CrossRefPubMedGoogle Scholar
  58. 58.
    J. Kajstura, B. Pertoldi, A. Leri, et al., Am. J. Pathol., 156, 813–819 (2000).PubMedGoogle Scholar
  59. 59.
    M. Kobling and Z. Estrov, N. Engl. J. Med., 349, 570–582 (2003).CrossRefPubMedGoogle Scholar
  60. 60.
    T. Kofidis, J. L. de Bruin, T. Yamane, et al., Stem Cells, 22, 1239–1245 (2004).CrossRefPubMedGoogle Scholar
  61. 61.
    R. Kronenwett, S. Martin, and R. Haas, Ibid., 18, 320–330 (2000).CrossRefPubMedGoogle Scholar
  62. 62.
    T. Kunisada, H. Yoshida, H. Yamazaki, et al., Development, 125, 2915–2923 (1998).PubMedGoogle Scholar
  63. 63.
    M. A. Laflamme, D. Myerson, J. E. Saffitz, C. E. Murry, Circ. Res., 90, 634–640 (2002).CrossRefPubMedGoogle Scholar
  64. 64.
    X. Lagasse, H. Connors, M. Al Dhalimy, et al., Nat. Med., 6, 1229–1234 (2000).CrossRefPubMedGoogle Scholar
  65. 65.
    M. S. Lee and R. R. Makkar, Ann. Intern. Med., 140, 729–737 (2004).PubMedGoogle Scholar
  66. 66.
    A. Leri, L. Barlucchi, F. Limana, et al., Proc. Natl. Acad. Sci. USA, 98, 8626–8631 (2001).CrossRefPubMedGoogle Scholar
  67. 67.
    J. L. Liesveld, K. Rosell, and N. Panoskaltsis, et al., J. Hematother. Stem Cell Res., 10, 643–655 (2001).CrossRefPubMedGoogle Scholar
  68. 68.
    K. Liu, M. M. Schoonmaker, B. L. Levine, et al., Proc. Natl. Acad. Sci. USA, 96, 5147–5152 (1999).CrossRefPubMedGoogle Scholar
  69. 69.
    S. Makino, K. Fukuda, S. Miyoshi, et al., J. Clin. Invest., 103, 697–705 (1999).PubMedGoogle Scholar
  70. 70.
    N. Malouf, W.B. Coleman, and J. Grisham, et al., Am. J. Pathol., 158, 1929–1935 (2001).PubMedGoogle Scholar
  71. 71.
    V. A. Maltsev, J. Rohwedel, J. Hescheler, and A. M. Wobus, Mech. Dev., 44, 41–50 (1993).CrossRefPubMedGoogle Scholar
  72. 72.
    L. Martin-Rivera, E. Herrera, J. P. Albar, M. A. Blasco, Proc. Natl. Acad. Sci. USA, 95, 10 471–10 476 (1998).CrossRefGoogle Scholar
  73. 73.
    Y. Matsui, K. M. Zsebo, and B. L. Hogan, Nature, 347, 667–669 (1990).CrossRefPubMedGoogle Scholar
  74. 74.
    K. Matsuura, T. Nagai, N. Nishigaki, et al., J. Biol. Chem., 279, 11 384–11 391 (2004).CrossRefGoogle Scholar
  75. 75.
    E. Messina, L. De Angelis, G. Frati, et al., Circ. Res., 95, 911–921 (2004).CrossRefPubMedGoogle Scholar
  76. 76.
    E. Mezey, K. J. Chandrosss, G. Harta, et al., Science, 290, 1779–1782 (2000).CrossRefPubMedGoogle Scholar
  77. 77.
    G. K. Michalopoulos and M. C. de Frances, Ibid., 276, 60–66 (1997).CrossRefPubMedGoogle Scholar
  78. 78.
    S. Miyagawa, Y. Sawa, S. Taketani, et al., Circulation, 105, 2556–2561 (2002).CrossRefPubMedGoogle Scholar
  79. 79.
    S. J. Morrison, N. M. Shah, and D. J. Anderson, Cell, 88, 286–298 (1997)CrossRefGoogle Scholar
  80. 80.
    J. S. Odorico, D. S. Kaufman, J. A. Thomson, Stem Cells, 19, 193–204 (2001).CrossRefPubMedGoogle Scholar
  81. 81.
    S. Oparil, S.P. Bishop, and F.J. Clubb, Hypertension, 6,Suppl. III, III-38-III-43 (1984).Google Scholar
  82. 82.
    D. Orlic, J. M. Hill, and A. E. Arai, Circ. Res., 91, 1092–1102 (2002).CrossRefPubMedGoogle Scholar
  83. 83.
    D. Orlic, J. Kajstura, S. Chimenti, et al., Nature, 410, 701–705 (2001).CrossRefPubMedGoogle Scholar
  84. 84.
    D. Orlic, J. Kajstura, S. Chimenti, et al., Ann. N.Y. Acad. Sci., 938, 221–230 (2001).PubMedGoogle Scholar
  85. 85.
    D. Orlic, J. Kajstura, S. Chimenti, et al., Proc. Natl. Acad. Sci. USA, 98, 10 344–10 349 (2001).CrossRefGoogle Scholar
  86. 86.
    H. N. Pak, M. Qayyum, D. T. Kim, et al., J. Cardiovasc. Electrophysiol., 14, 841–848 (2003).CrossRefPubMedGoogle Scholar
  87. 87.
    T. Papayannopoulou and B., Nakamoto Proc. Natl. Acad. Sci. USA, 90, 9374–9378 (1993).PubMedGoogle Scholar
  88. 88.
    V. Patella, I. Marino, E. Arbustini, et al., Circulation, 97, 971–978 (1998).PubMedGoogle Scholar
  89. 89.
    D. G. Penney, M. S. Baylerian, J. E. Thill, et al., Am. J. Physiol., 244, H289–H297 (1983).PubMedGoogle Scholar
  90. 90.
    E. C. Perin, H. F. R. Dohmann, R. Borojevic, et al., Circulation, 107, 2294–2302 (2003).CrossRefPubMedGoogle Scholar
  91. 91.
    B. E. Petersen, W. C. Bowen, K. D. Patrene, et al., Science, 284, 1168–1170 (1999).CrossRefPubMedGoogle Scholar
  92. 92.
    R.O. Petersen and R. Baserga, Exp. Cell. Res., 40, 340–352 (1965).CrossRefPubMedGoogle Scholar
  93. 93.
    M. F. Pittenger and B. J. Martin, Circ. Res., 95, 9–20 (2004).CrossRefPubMedGoogle Scholar
  94. 94.
    F. Prosper, D. Stroncek, J.B. McCarthy, et al., J. Clin. Invest., 101, 2456–2467 (1998).PubMedGoogle Scholar
  95. 95.
    F. Quaini, K. Urbanek, A.P. Beltrami, et al., N. Engl. J. Med., 346, 5–15 (2002).CrossRefPubMedGoogle Scholar
  96. 96.
    S. Rangappa, J. W. C. Entwistle, A. S. Wechsler, and Y. Kresh, J. Thorac. Cardiovasc. Surg., 126, 124–132 (2003).CrossRefPubMedGoogle Scholar
  97. 97.
    T. Saito, J.-Q. Kuang, C. C. H. Lin, and R. C.-J. Chiu, Ibid, 114–122.Google Scholar
  98. 98.
    R. Sasaki, Y. Watanabe, T. Morishita, and S. Yamagata, Tohoku J. Exp. Med., 95, 177–184 (1968).PubMedGoogle Scholar
  99. 99.
    M. Sata, A. Saiura, A. Kunisato, et al., Nat. Med., 8, 403–409 (2002).CrossRefPubMedGoogle Scholar
  100. 100.
    R. E. Schwartz, M. Reyes, L. Koodie, et al., J. Clin. Invest., 101, 1291–1302 (2002).CrossRefGoogle Scholar
  101. 101.
    J. G. Shake, P. J. Gruber, W. A. Baumgartner, et al., Ann. Thorac. Surg., 73, 1919–1925 (2002).CrossRefPubMedGoogle Scholar
  102. 102.
    S. Shintani, T. Murohara, H. Ikeda, et al., Circulation, 103, 2776–2779 (2001).PubMedGoogle Scholar
  103. 103.
    B. E. Strauer, M. Brehm, T. Zeus, et al., Ibid., 106, 1913–1918 (2002).CrossRefPubMedGoogle Scholar
  104. 104.
    B. Swynghedauw, Physiol. Rev., 79, 215–262 (1999).PubMedGoogle Scholar
  105. 105.
    T. Takahashi, B. Lord, P. C. Schulze, et al., Circulation, 107, 1912–1916 (2003).CrossRefPubMedGoogle Scholar
  106. 106.
    M. Teyssier-Le Discorde, S. Prost, E. Nandrot, and M. Kirszanbaum, Br. J. Haematol., 107, 247–253 (1999).CrossRefPubMedGoogle Scholar
  107. 107.
    J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro, et al., Science, 282, 1145–1147 (1998).PubMedGoogle Scholar
  108. 108.
    C. Toma, M. F. Pittenger, K. S. Cahill, et al., Circulation, 105, 93–98 (2002).CrossRefPubMedGoogle Scholar
  109. 109.
    K. Urbanek, F. Quaini, G. Tasca, et al., Proc. Natl. Acad. Sci. USA, 100, 10 440–10 445 (2003).CrossRefGoogle Scholar
  110. 110.
    T. B. van Dijk, E. van den Akker, M. Parren-van Amelsvoort, et al., Blood, 96, 3406–3413 (2000).PubMedGoogle Scholar
  111. 111.
    C. Ventura and M. Maioli, Circ. Res., 87, 189–194 (2000).PubMedGoogle Scholar
  112. 112.
    C. M. Verfaillie, R. Hurley, R. Bhatia, et al., Crit. Rev. Oncol. Hematol., 16, 201–224 (1994).PubMedGoogle Scholar
  113. 113.
    I. L. Weissman, Cell, 100, 157–168 (2000).CrossRefPubMedGoogle Scholar
  114. 114.
    A. M. Wobus, G. Kaomei, J. Shan, et al., J. Mol. Cell. Cardiol., 29, 1525–1539 (1997).CrossRefPubMedGoogle Scholar
  115. 115.
    C. Xu, S. Police, N. Rao, M. K. Carpenter, Circ. Res., 91, 501–508 (2002).CrossRefPubMedGoogle Scholar
  116. 116.
    M. Xu, M. Wani, Y.-S. Dai, et al., Circulation, 110, 2658–2665 (2004).CrossRefPubMedGoogle Scholar
  117. 117.
    W. Xu, X. Zhang, H. Qian, et al., Exp. Biol. Med., 229, 623–631 (2004).Google Scholar
  118. 118.
    Y.-S. Yoon, J.-S. Park, T. Tkebuchava, et al., Circulation, 109, 3154–3157 (2004).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • L. M. Nepomnyashchikh
    • 1
  • E. L. Lushnikova
    • 1
  • D.V. Goldshtein
    • 1
  1. 1.Research Institute of Regional Pathology and PathomorphologySiberian Division of the Russian Academy of Medical SciencesNovosibirskRussia

Personalised recommendations