Bulletin of Experimental Biology and Medicine

, Volume 138, Issue 5, pp 457–459 | Cite as

Kinetic parameters of oxidation of individual fatty acids with ozone

  • D. M. Lisitsyn
  • S. D. Razumovskii
  • M. A. Tishenin
  • V. N. TitovEmail author


Using an original automated analyzer of double bonds we determined the rate constants for oxidation of saturated and unsaturated mono- and dienoic fatty acids (in vivo substrates for β-oxidation in the mitochondria) by the ozone titration method. The rate constant for O3 oxidation is maximum for oleic monoenoic acid, lower for dienoic linoleic, and very low for saturated palmitic acid. The rate constant for oxidation of oleic fatty acid, which by one order of magnitude surpasses that for oxidation of essential arachidonic acid, indicates that oleic acid is a leading in vivo acceptor of active O2 species. By the rate of trapping active oxygen species and in the quantitative aspect, endogenously produced oleic acid can be regarded as the main biological antioxidant.

Key Words

oleic and arachidonic fatty acids ozone antioxidants peroxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. F. Azizova, T. N. Vakhrusheva, E. S. Dremina, et al., Byull. Eksp. Biol. Med., 122, No. 7, 32–36 (1996).Google Scholar
  2. 2.
    Yu. A. Vladimirov, Biokhimiya, 69, No. 1, 5–7 (2004).Google Scholar
  3. 3.
    N. K. Zenkov, V. Z. Lankin, and E. B. Men’shchikova, Oxidative Stress [in Russian], Moscow (2001).Google Scholar
  4. 4.
    G. I. Klebanov, Yu. O. Teselkin, I. V. Babenkova, et al., Vestn. Rossiisk. Akad. Med. Nauk, No. 1, 15–22 (2000).Google Scholar
  5. 5.
    V. Z. Lankin, A. K. Tikhaze, and Yu. N. Belenkov, Kardiologiya, 40, No. 7, 48–61 (2000).Google Scholar
  6. 6.
    D. M. Lisitsyn, T. I. Pozdnyak, and S. D. Razumovskii, Kinetika i Kataliz, 17, No. 4, 1049–1055 (1976).Google Scholar
  7. 7.
    S. D. Razumovskii, S. K. Rakovskii, D. M. Shopov, and G. E. Zaikov, Ozone and Its Reactions with Organic Compounds [in Russian], Sofia (1983).Google Scholar
  8. 8.
    V. N. Titov, Atherosclerosis as a Polyenoic Fatty Acid Abnormality (Biological Basis of Atherogenesis Theory) [in Russian], Moscow (2002).Google Scholar
  9. 9.
    V. N. Titov and D. M. Lisitsyn, Klin. Lab. Diagn., No. 1, 4–10 (2003).Google Scholar
  10. 10.
    W. E. Connor, D. S. Lin, and C. Colvis, J. Lipid Res., 37, 290–298 (1996).Google Scholar
  11. 11.
    S. C. Cunnane, Prog. Lipid Res., 42, 544–568 (2003).Google Scholar
  12. 12.
    Y. Dotan, D. Lichtenberg, and I. Pinchuk, Ibid., 43, 1–28 (2004).Google Scholar
  13. 13.
    M. M. Johnson, D. D. Swan, M. E. Surette, and J. Stegner, J. Nutrition, 127, 1435–1444 (1997).Google Scholar
  14. 14.
    D. E. Schmidt, J. B. Allred, and C. L. Kien, J. Lipid Res., 40, 2322–2332 (1999).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • D. M. Lisitsyn
    • 1
    • 2
  • S. D. Razumovskii
    • 1
    • 2
  • M. A. Tishenin
    • 1
    • 2
  • V. N. Titov
    • 1
    • 2
    Email author
  1. 1.Laboratory of Clinical Biochemistry of Lipids and Lipoproteins, Institute of Clinical Cardiology, Cardiology Research CenterMinistry of Health of Russian FederationRussia
  2. 2.Institute of Chemical PhysicsAcademy of Sciences of Russian FederationMoscow

Personalised recommendations