Advertisement

Axiomathes

pp 1–31 | Cite as

A Scientific Metaphysics and Ockham’s Razor

  • Bruce LongEmail author
Original Paper

Abstract

I argue that although Ockham’s Razor (OR) has its origins in a-priorist ontological mandates according to the purposes of natural theology and natural philosophy as influenced by it, the principle has taken on significant empirical and contingent materialist connotations and conceptual content since the scientific revolution. I briefly discuss the pluralism of the concept of OR historically and in contemporary science and philosophy. I then attempt to align scientific metaphysics with contemporary conceptions of OR, and to demonstrate that ontic parsimony is an indispensable element of scientific (contingent and anti-a-priorist) metaphysics. I then further deploy that scientific metaphysics to propose a contingently grounded semi-formal approach, with set theoretic features, and then with information theoretic features, to provide a way of assessing when a scientific theory and its ontology are aligned with OR appropriately in the context of the proposed scientific metaphysics.

Keywords

Ockham’s Razor Scientific metaphysics Principle of ontological parsimony Scientific realism Ontology 

Notes

References

  1. Alencar MS (2015) Information theory. In communications and signal processing collection. Momentum Press, New YorkGoogle Scholar
  2. Armstrong DM (1978) Universals and scientific realism. Cambridge University Press, CambridgeGoogle Scholar
  3. Aydede M, Güzeldere G (2005) Cognitive architecture, concepts, and introspection: an information-theoretic solution to the problem of phenomenal consciousness. Noûs 39(2):197–255CrossRefGoogle Scholar
  4. Baker A (2003) Quantitative parsimony and explanatory power. Br J Philos Sci 2:245CrossRefGoogle Scholar
  5. Baker A (2007) Occam’s Razor in science: a case study from biogeography. Biol Philos 22(2):193–215.  https://doi.org/10.1007/s10539-006-9027-9 CrossRefGoogle Scholar
  6. Balasubramanian V (1997) Statistical inference, Occam’s Razor, and statistical mechanics on the space of probability distributions. Neural Comput 9(2):349–368CrossRefGoogle Scholar
  7. Blumer A, Ehrenfeucht A, Haussler D, Warmuth MK (1987) Occam’s Razor. Inform Process Lett 24(6):377–380.  https://doi.org/10.1016/0020-0190(87)90114-1 CrossRefGoogle Scholar
  8. Bywater RP (2015) Prediction of protein structural features from sequence data based on Shannon entropy and Kolmogorov complexity. PLoS ONE 10(4):e0119306CrossRefGoogle Scholar
  9. Cao TY (2003a) Can we dissolve physical entities into mathematical structures? Synthese 136(1):57–71CrossRefGoogle Scholar
  10. Cao TY (2003b) Structural realism and the interpretation of quantum field theory. Synthese 136(1):3–24CrossRefGoogle Scholar
  11. Cartier P, Moussa P, Julia B, Vanhove P (2007) Frontiers in number theory, physics, and geometry II: on conformal field theories, discrete groups and renormalization. Springer, BerlinCrossRefGoogle Scholar
  12. Chaitin G (1975) A theory of program size formally identical to information theory. J ACM (JACM) 22(3):329–340CrossRefGoogle Scholar
  13. Cover TM, Thomas JA (2006) Elements of information theory, 2nd edn. Wiley-Interscience, HobokenGoogle Scholar
  14. Cowan CL, Reines F, Harrison FB, Kruse HW, McGuire AD (1956) Detection of the free neutrino: a confirmation. Science 124(3212):103–104CrossRefGoogle Scholar
  15. Dennett DC (1991a) Real patterns. J Philos 88(1):27–51CrossRefGoogle Scholar
  16. Dennett DC (1991b) Real patterns. J Philos 88(1):27–51CrossRefGoogle Scholar
  17. Deutsch D (1998) The fabric of reality. Penguin Books, LondonGoogle Scholar
  18. Domingo C, Tsukiji T, Watanabe O (1997) Partial Occam’s Razor and its applications. Inform Process Lett 64(4):179–185CrossRefGoogle Scholar
  19. Einstein A (1934) On the method of theoretical physics. Philos Sci 1(2):163–169CrossRefGoogle Scholar
  20. Einstein A (1950) The meaning of relativity. Am J Phys 18(6):403–404CrossRefGoogle Scholar
  21. Esfeld M (2009a) Explanation (deductive-nomological, mereological, reductive). In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer, BerlinGoogle Scholar
  22. Esfeld M (2009b) The modal nature of structures in ontic structural realism. Int Stud Philos Sci 23(2):179–194CrossRefGoogle Scholar
  23. Esfeld M (2017) A proposal for a minimalist ontology. http://philsci-archive.pitt.edu/13011/. Accessed 17 June 2018
  24. Everett H (2012) The everett interpretation of quantum mechanics: collected works 1955–1980 with commentary. http://www.jstor.org/stable/j.ctt7t2jf. Accessed 17 May 2018
  25. Everitt CWF, DeBra DB, Parkinson BW, Turneaure JP, Conklin JW, Heifetz MI, Wang S (2011) Gravity probe B: final results of a space experiment to test general relativity. Phys Rev Lett 106(22):221101.  https://doi.org/10.1103/PhysRevLett.106.221101 CrossRefGoogle Scholar
  26. Floridi L (2008) A defence of informational structural realism. Synthese 161(2):219–253CrossRefGoogle Scholar
  27. French S (2012) The presentation of objects and the representation of structure. In: Landry E, Rickles D (eds) Structural realism: structure, object, and causality, pp 3–28.  https://doi.org/10.1007/978-94-007-2579-9_1
  28. French S (2014) The structure of the world: metaphysics and representation. Oxford University Press, OxfordCrossRefGoogle Scholar
  29. Greaves H (2007) Probability in the everett interpretation. Philos Compass 2(1):109–128CrossRefGoogle Scholar
  30. Grünwald PD, Vitányi PMB (2008) Algorithmic information theory. [Cs, Math, Stat]. Retrieved from http://arxiv.org/abs/0809.2754
  31. Grünwald PD, Myung IJ, Pitt MA (2005) Advances in minimum description length: theory and applications. MIT, CambridgeCrossRefGoogle Scholar
  32. Guerra F, Leone M, Robotti N (2014) When energy conservation seems to fail: the prediction of the neutrino. Sci Educ 23(6):1339–1359CrossRefGoogle Scholar
  33. Hacking I (1982) Experimentation and scientific realism. Philos Top 13(1):71CrossRefGoogle Scholar
  34. Hacking I (1983) Representing and intervening: introductory topics in the philosophy of natural science. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  35. Healey R (2007) Gauging what’s real: the conceptual foundations of contemporary gauge theories. Oxford University Press, OxfordCrossRefGoogle Scholar
  36. Humphreys P (1997) How properties emerge. Philos Sci 64(1):1–17CrossRefGoogle Scholar
  37. Humphreys P (2013) Scientific ontology and speculative ontology. In: Ross D, Ladyman J, Kincaid H (eds) Scientific metaphysics. Oxford University Press, OxfordGoogle Scholar
  38. Kolmogorov AN (1968) Three approaches to the quantitative definition of information. Int J Comput Math 2(1–4):157–168.  https://doi.org/10.1080/00207166808803030 CrossRefGoogle Scholar
  39. Kruse HW (2011) Reines–Cowan team discovery of the electron neutrino. Nucl Phys B Proc Suppl 221:142–148CrossRefGoogle Scholar
  40. Kullback S (1959) Information theory and statistics. Wiley, New YorkGoogle Scholar
  41. Ladyman J, Ross D (eds) (2013) The world in the data. In: Scientific metaphysics. Oxford University Press, OxfordGoogle Scholar
  42. Ladyman James, Ross D, Spurrett D, Collier JG (2007) Every thing must go: metaphysics naturalized. Oxford University Press, OxfordCrossRefGoogle Scholar
  43. Lancaster T, Blundell S (2014) Quantum field theory for the gifted amateur. Oxford University Press, OxfordCrossRefGoogle Scholar
  44. Lucibella M (2011) Looking at physics history. July 21, 2000: Fermilab announces first direct evidence for tau neutrino [History and Philosophy of Physics]. Retrieved from APS Physics American Physical Society Sites. https://www.aps.org/publications/capitolhillquarterly/201110/physicshistory.cfm. Accessed 14 Nov 2018
  45. Malament D (1982) Science without numbers: a defense of nominalism by Hartry H. Field. J Philos 79(9):523–534Google Scholar
  46. Nola R (2008) The optimistic meta-induction and ontological continuity: the case of the electron.  https://doi.org/10.1007/978-1-4020-6279-7_12
  47. Putnam H (1975) Mathematics, matter, and method, vol 1. Cambridge University Press, LondonGoogle Scholar
  48. Quine WV (1948) On what there is. Rev Metaphys 2(5):21–38Google Scholar
  49. Ralph W (2015) The combinatorics of Occam’s Razor. [Math]. Retrieved from http://arxiv.org/abs/1504.07441
  50. Redhead M (1995) From physics to metaphysics. Cambridge University Press, New YorkCrossRefGoogle Scholar
  51. Redhead M, Pagonis C, Butterfield J (1999) From physics to philosophy. Presented at the Cambridge. Cambridge University Press, CambridgeGoogle Scholar
  52. Reines F, Kropp WR (1991) Neutrinos and other matters: the selected works of Frederick Reines. World Scientific, SingaporeGoogle Scholar
  53. Resnik DB (1994) Hacking’s experimental realism. Can J Philos 24(3):395CrossRefGoogle Scholar
  54. Rickles D (2008a) Interpretation formalism. In: Rickles D (ed) Symmetry, structure and spacetime (vol 3, pp 1–22). http://www.sciencedirect.com/science/article/pii/S1871177408030015. Accessed 14 Nov 2018
  55. Rickles D (2008b) The interpretation of gauge symmetries. In Rickles D (ed) Symmetry, structure and spacetime (vol 3, pp 45–71). http://www.sciencedirect.com/science/article/pii/S1871177408030039. Accessed 14 Nov 2018
  56. Ross D, Ladyman J, Kincaid H (2013) Scientific metaphysics. Oxford University Press, OxfordCrossRefGoogle Scholar
  57. Shannon CE (1948) A mathematical theory of communication: Reprinted with corrections 1998 (50th anniversary release of 1948 paper)). Bell Syst Tech JGoogle Scholar
  58. Smolin 1955-, Lee (2006) The trouble with physics: the rise of string theory, the fall of a science, and what comes next. https://ezp.lib.unimelb.edu.au/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edshlc&AN=edshlc.010120171.0&site=eds-live&scope=site. Accessed 17 June 2018
  59. Smolin L (2007) With string, science has tied itself in knots. Times Higher Educ Suppl 1806:16Google Scholar
  60. Sober E (2009) Parsimony arguments in science and philosophy—a test case for naturalismP. Proc Address Am Philos Assoc 83(2):117–155Google Scholar
  61. Sober E (ed) (2015a). A history of parsimony in thin slices (from Aristotle to Morgan). In: Ockham’s Razors: a user’s manual, pp 4–60.  https://doi.org/10.1017/CBO9781107705937.002
  62. Sober E (ed) (2015b). Introduction. In: Ockham’s Razors: a user’s manual, pp 1–3.  https://doi.org/10.1017/CBO9781107705937.001
  63. Sober E (ed) (2015c) Parsimony in philosophy. In: Ockham’s Razors: a user’s manual, pp 244–290.  https://doi.org/10.1017/CBO9781107705937.006
  64. Sober E (ed) (2015d) The probabilistic turn. In: Ockham’s Razors: a user’s manual, pp 61–152.  https://doi.org/10.1017/CBO9781107705937.003
  65. Soklakov AN (2002) Occam’s Razor as a formal basis for a physical theory. Found Phys Lett 15(2):107–135CrossRefGoogle Scholar
  66. Steane AM (2003) A quantum computer only needs one universe. Stud Hist Philos Sci B Stud Hist Philos Mod Phys 34(3):469–478.  https://doi.org/10.1016/S1355-2198(03)00038-8 CrossRefGoogle Scholar
  67. Symonds M, Moussalli A (2011) A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav Ecol Sociobiol 65(1):13–21.  https://doi.org/10.1007/s00265-010-1037-6 CrossRefGoogle Scholar
  68. Tan MYJ, Biswas R (2012) The reliability of the Akaike information criterion method in cosmological model selection. Mon Not R Astron Soc 419(4):3292–3303.  https://doi.org/10.1111/j.1365-2966.2011.19969.x CrossRefGoogle Scholar
  69. Tong D (2007) Quantum field theory. Part III mathematical tripos. Presented at the University of Cambridge. Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences. http://www.downsky.org/e-books-list/quantum-field-theory-by-dr-david-tong-1a73p.html. Accessed 17 May 2018
  70. Vitanyi PMB, Li M (2009) An introduction to Komogorov complexity and its applications. https://books.google.com.au/books?id=25fue3UYDN0C. Accessed 30 Apr 2018
  71. Wallace D (2012) The emergent multiverse: quantum theory according to the Everett interpretation. Oxford University Press, OxfordCrossRefGoogle Scholar
  72. Wallace CS, Dowe DL (1999) Minimum message length and Kolmogorov complexity. Comput J 42(4):270–283CrossRefGoogle Scholar
  73. Weinberg S (1995) General renormalization theory. In: Weinberg S (ed) The quantum theory of fields: volume 1: foundations, vol 1, pp 499–533.  https://doi.org/10.1017/CBO9781139644167.014
  74. Woit P (2002) Is string theory even wrong? Am Sci 90(2):110–112.  https://doi.org/10.1511/2002.2.110 CrossRefGoogle Scholar
  75. Woit P (2011) String theory and the failure of uniicationGoogle Scholar
  76. Zeidler E (2009) Quantum field theory II: quantum electrodynamics: a bridge between mathematicians and physicists, 1st edn. Springer, BerlinGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.The Department of PhilosophyThe University of SydneySydneyAustralia

Personalised recommendations