pp 1–19 | Cite as

Goldbach’s Conjecture as a ‘Transcendental’ Theorem

  • Francesco PanizzoliEmail author
Original Paper


Goldbach’s conjecture, if not read in number theory (mathematical level), but in a precise foundation theory of mathematics (meta-mathematical level), that refers to the metaphysical ‘theory of the participation’ of Thomas Aquinas (1225–1274), poses a surprising analogy between the category of the quantity, within which the same arithmetic conjecture is formulated, and the transcendental/formal dimension. It says: every even number is ‘like’ a two, that is: it has the form-of-two. And that means: it is the composition of two units; not two equal arithmetic units (two numbers ‘one’), but two different formal-transcendental units, which are, in arithmetic, two prime numbers.


Philosophy of mathematics Aquinas Analogy Act-power Goldbach’s conjecture 



[Thomas Aquinas’s citated works]

  1. [In I Sent.] Commentum in quattuor libros Sententiarum magistri Petri LombardiGoogle Scholar
  2. [De Ver.] Quaestiones disputatae: De veritateGoogle Scholar
  3. [Quod.] Quaestiones QuodlibetalesGoogle Scholar
  4. [De Pot.] Quaestiones disputatae: De potentiaGoogle Scholar
  5. [S. Th.] Summa TheologiaeGoogle Scholar
  6. [In Met.] In duodecim libros Metaphysicorum expositioGoogle Scholar
  7. [In Phys.] In libros Physicorum expositioGoogle Scholar
  8. Basti G (2002) Filosofia della natura e della scienza, vol 1: I Fondamenti, LUP, Roma (English translation for students use, on line at
  9. Basti G (2004) Analogia, Ontologia formale e problema dei fondamenti. In: [Basti-Testi], pp 159–236Google Scholar
  10. Basti G (2011) Ontologia formale Tommaso d’Aquino ed Edith Stein. In: Ales Bello A, Alfieri F, Shahid M (eds) Edith Stein—Hedwig Conrad-Martius—Gerda Walther. Fenomenologia della persona, della vita e della comunità. Laterza, Bari, pp 81–358Google Scholar
  11. Basti G (2014) L’ontologia formale del ‘realismo naturale’, cosmologia evolutiva e partecipazione dell’essere. In: “Divus Thomas” 117-2 , pp 229–334Google Scholar
  12. Basti G, Panizzoli F (2018) Istituzioni di Filosofia formale. LUP, RomeGoogle Scholar
  13. Basti G, Perrone AL (1996) Le radici forti del pensiero debole, Il Poligrafo e LUP, Padova-RomaGoogle Scholar
  14. Basti G, Testi CA (ed) (2004) Analogia e autoreferenza, Marietti 1820, Genova-MilanoGoogle Scholar
  15. Fabro C (1966) The Trascendentality of “Ens-Esse” and the Ground of Metaphysics. In: “International philosophical quaterly”, vol 3, New York-Louvain, September , pp 389–427Google Scholar
  16. Fabro C (1967a) Participation. In: New catholic encyclopedia, 1st edn. McGraw-HillGoogle Scholar
  17. Fabro C (1967b) Existence. In: New catholic encyclopedia, 1st edn. McGraw-HillGoogle Scholar
  18. Nelson E (1986) Predicative arithmetic. Princeton Univerity Press, PrincetonCrossRefGoogle Scholar
  19. Panizzoli F (2014) Ontologia della partecipazione. Verso una formalizzazione della metafisica di Tommaso d’Aquino, Aracne, RomaGoogle Scholar
  20. Shapiro S (ed) (2007) The oxford handbook of philosophy of mathematics and logic.

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Pontifical Lateran UniversityRomeItaly

Personalised recommendations