, Volume 27, Issue 1, pp 79–112 | Cite as

What is the Nature of Mathematical–Logical Objects?

  • Stathis LivadasEmail author
Original Paper


This article deals with a question of a most general, comprehensive and profound content as it is the nature of mathematical–logical objects insofar as these are considered objects of knowledge and more specifically objects of formal mathematical theories. As objects of formal theories they are dealt with in the sense they have acquired primarily from the beginnings of the systematic study of mathematical foundations in connection with logic dating from the works of G. Cantor and G. Frege in the last decades of the nineteenth century. Largely motivated by a phenomenologically founded view of mathematical objects/states-of-affairs, I try to consistently argue for their character as objects shaped to a certain extent by intentional forms exhibited by consciousness and the modes of constitution of inner temporality and at the same time as constrained in the form of immanent ‘appearances’ by what stands as their non-eliminable reference, that is, the world as primitive soil of experience and the mathematical intuitions developed in relations of reciprocity within-the-world. In this perspective and relative to my intentions I enter, in the last section, into a brief review of certain positions of G. Sher’s foundational holism and R. Tieszen’s constituted platonism, among others, respectively presented in Sher (Bull Symb Log 19:145–198, 2013) and Tieszen (After Gödel: platonism and rationalism in mathematics and logic, Oxford University Press, Oxford, 2011).


A priori possibility Infinite totality Intentional consciousness Objectivity of understanding Predicative activity Set constitution Temporal unity 


  1. Aristotle (1989) Aristotle XVII. Metaphysics I-IX (trans: Treddenick H). The Loeb Classical Library. Harvard University Press, CambridgeGoogle Scholar
  2. da Silva J (2013) How sets came to be: the concept of set from a phenomenological perspective. In: Hopkins B, Drummond J (eds) The new yearbook for phenomenology and phenomenological philosophy, vol 13, pp 84–101Google Scholar
  3. Feferman S (1999) Logic, logics, and logicism. Notre Dame J Form Log 40:31–54CrossRefGoogle Scholar
  4. Feferman S (2009) Conceptions of the continuum. Intellectica 51:169–189Google Scholar
  5. Feferman S et al (eds) (1990) Kurt Gödel: collected works II. Oxford University Press, OxfordGoogle Scholar
  6. Feferman S et al (eds) (1995) Kurt Gödel: collected works III. Oxford University Press, OxfordGoogle Scholar
  7. Hartimo M (2006) Mathematical roots of phenomenology: Husserl and the concept of number. Hist Philos Log 27:319–337CrossRefGoogle Scholar
  8. Hauser K (2006) Gödel’s program revisited part I: the turn to phenomenology. Bull Symb Logic 12(4):529–590CrossRefGoogle Scholar
  9. Husserl E (1929) Formale und Transzendentale Logik. Max Niemeyer Verlag, HalleGoogle Scholar
  10. Husserl E (1966) Vorlesungen zur Phänomenologie des inneren Zeibewusstseins, Hua, Band X, hsgb. R. Boehm. M. Nijhoff, Den HaagGoogle Scholar
  11. Husserl E (1970) Philosophie der Arithmetik, Hua Band XII, hsgb. L. Eley. M. Nijhoff, Den HaagGoogle Scholar
  12. Husserl E (1939) Erfahrung und Urteil, hsgb. L. Landgrebe, Prag: Acad./Verlagsbuchhandlung. Engl. translation: (1973) Experience and judgment (trans: Churchill JS, Americs K). Routledge & Kegan Paul, LondonGoogle Scholar
  13. Husserl E (1976a) Ideen zu einer reinen Phänomenologie und phänomenologischen Philosophie, Erstes Buch, Hua Band III/I, hsgb. K. Schuhmann. M. Nijhoff, Den HaagGoogle Scholar
  14. Husserl E (1976b) Die Krisis der Europäischen Wissenschaften und die Transzendentale Phänomenologie, Hua Band VI, hsgb. W. Biemel. M. Nijhoff, Den HaagGoogle Scholar
  15. Kleene SC (1980) Introduction to metamathematics. North-Holland Pub, New-YorkGoogle Scholar
  16. Krause D, Coelho AMN (2005) Identity, indiscernibility, and philosophical claims. Axiomathes 15:191–210CrossRefGoogle Scholar
  17. Kunen K (1982) Set theory. An introduction to independence proofs. Elsevier Sci. Pub, AmsterdamGoogle Scholar
  18. Michalski K (1997) Logic and time. Kluwer Academemic Publishers, DordrechtCrossRefGoogle Scholar
  19. Nagel E, Newman J (1958) Gödel’s proof. New York University Press, NYGoogle Scholar
  20. Nelson E (1986) Predicative arithmetic. Mathematical notes. Princeton Univ. Press, PrincetonCrossRefGoogle Scholar
  21. Ortiz-Hill C (2013) The strange worlds of actual consciousness and the purely logical. In: Hopkins B, Drummond J (eds) The new yearbook for phenomenology and phenomenological philosophy, vol 13, pp 62–83Google Scholar
  22. Parsons C (2008) Mathematical thought and its objects. Cambridge University Press, CambridgeGoogle Scholar
  23. Quine VW (1947) On universals. J Symb Log 12(3):74–84CrossRefGoogle Scholar
  24. Sher G (2000) The logical roots of indeterminacy. In: Sher G, Tieszen R (eds) Between logic and intuition. Cambridge University Press, Cambridge, pp 100–124CrossRefGoogle Scholar
  25. Sher G (2013) The foundational problem of logic. Bull Symb Log 19:145–198CrossRefGoogle Scholar
  26. Tieszen R (2011) After Gödel: platonism and rationalism in mathematics and logic. Oxford University Press, OxfordCrossRefGoogle Scholar
  27. Wang H (1996) A logical journey. From Gödel to philosophy. MIT Press, CambridgeGoogle Scholar
  28. Weyl H (1994) The continuum (trans: Pollard S, Bole T). Dover Pub, New YorkGoogle Scholar
  29. Woodin HW (2011a) The transfinite universe. In: Baaz M et al (eds) Kurt Gödel and the foundations of mathematics. Cambridge University Press, NY, pp 449–471CrossRefGoogle Scholar
  30. Woodin HW (2011b) The realm of the infinite. In: Heller M, Woodin HW (eds) Infinity, new research frontiers. Cambridge University Press, NY, pp 89–118CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.PatrasGreece

Personalised recommendations