, Volume 27, Issue 1, pp 113–128 | Cite as

Surveyability and Mathematical Certainty

  • Kai Michael BüttnerEmail author
Original Paper


The paper provides an interpretation of Wittgenstein’s claim that a mathematical proof must be surveyable. It will be argued that this claim specifies a precondition for the applicability of the word ‘proof’. Accordingly, the latter is applicable to a proof-pattern only if we can come to agree by mere observation whether or not the pattern possesses the relevant structural features. The claim is problematic. It does not imply any questionable finitist doctrine. But it cannot be said to articulate a feature of our actual usage of the word ‘proof’. The claim can be dissociated, however, from two tenable doctrines of Wittgenstein, namely that proofs can be used as paradigms for corresponding proof concepts and that a proof is not an experiment.


Certainty Experiment Formalism Paradigm Proof Surveyability Wittgenstein 


  1. Addis M (1995) Surveyability and Sorites paradox. Philos Math 3(3):157–165CrossRefGoogle Scholar
  2. Baker GP, Hacker PMS (2009) Wittgenstein: rules, grammar and necessity. Blackwell, OxfordCrossRefGoogle Scholar
  3. Bassler OB (2006) The surveyability of mathematical proof: a historical perspective. Synthese 148(1):99–133CrossRefGoogle Scholar
  4. Benacerraf P (1973) Mathematical truth. J Philos 70(19):661–679CrossRefGoogle Scholar
  5. Dummett MAE (1978) Truth and other enigmas. Duckworth, LondonGoogle Scholar
  6. Frascolla P (1994) Wittgenstein’s philosophy of mathematics. Routledge, LondonGoogle Scholar
  7. Kant I (1997) Critique of pure reason. Cambridge University Press, CambridgeGoogle Scholar
  8. Marion M (1998) Wittgenstein, finitism, and the foundations of mathematics. Clarendon Press, OxfordGoogle Scholar
  9. Marion M (2011) Wittgenstein on the surveyability of proofs. In: McGinn M, Kuusela O (eds) The Oxford handbook of Wittgenstein. Oxford University Press, OxfordGoogle Scholar
  10. Mühlhölzer F (2005) “A mathematical proof must be surveyable”—what Wittgenstein meant by this and what it implies. Grazer Philosophische Studien 71:57–86Google Scholar
  11. Quine WVO (1992) Pursuit of truth. Harvard University Press, CambridgeGoogle Scholar
  12. Shanker SG (1987) Wittgenstein and the turning-point in the philosophy of mathematics. SUNY Press, AlbanyGoogle Scholar
  13. Steiner M (1975) Mathematical knowledge. Cornell University Press, IthacaGoogle Scholar
  14. Stevenson CL (1938) Persuasive definitions. Mind 47(187):331–350CrossRefGoogle Scholar
  15. Wittgenstein L (1958) Philosophical investigations, 2nd edn. Blackwell, OxfordGoogle Scholar
  16. Wittgenstein L (1961) Tractatus logico-philosophicus. Routledge and Kegan Paul, LondonGoogle Scholar
  17. Wittgenstein L (1969) The blue and the brown books. Blackwell, OxfordGoogle Scholar
  18. Wittgenstein L (1974) Philosophical grammar. Blackwell, OxfordGoogle Scholar
  19. Wittgenstein L (1975) Philosophical remarks. Blackwell, OxfordGoogle Scholar
  20. Wittgenstein L (1976) Lectures on the foundations of mathematics. Harvester Press Ltd, HassocksGoogle Scholar
  21. Wittgenstein L (1978) Remarks on the foundations of mathematics. Blackwell, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Laboratoire d’Histoire des Sciences et de Philosophie, Archives Henri Poincaré, UMR 7117 CNRSUniversité de LorraineNancyFrance

Personalised recommendations