, Volume 25, Issue 1, pp 79–91 | Cite as

What is a Proof?

Original Paper


In this programmatic paper we renew the well-known question “What is a proof?”. Starting from the challenge of the mathematical community by computer assisted theorem provers we discuss in the first part how the experiences from examinations of proofs can help to sharpen the question. In the second part we have a look to the new challenge given by “big proofs”.


Proof Mathematical proof Computer-assisted proof Big proofs 



Research supported by the Portuguese Science Foundation, FCT, through the projects Hilbert’s Legacy in the Philosophy of Mathematics, PTDC/FIL-FCI/109991/2009 and The Notion of Mathematical Proof, PTDC/MHC-FIL/5363/2012.


  1. Alama J, Kahle R (2013) Checking proofs. In: Aberdein A, Dove IJ (eds) The argument of mathematics, volume 30 of logic, epistemology and the unity of science. Springer, Berlin, pp 147–170Google Scholar
  2. Aschbacher M (2004) The status of the classification of the finite simple groups. Not Am Math Soc 51(7):736–740Google Scholar
  3. Aschbacher M (2005) Highly complex proofs and implications of such proofs. Philos Trans R Soc A 363:2401–2406CrossRefGoogle Scholar
  4. Avigad J (2006) Mathematical method and proof. Synthese 153:105–149CrossRefGoogle Scholar
  5. Avigad J, Harrison J (2014) Formally verified mathematics. Commun ACM 57(4):66–75CrossRefGoogle Scholar
  6. Baaz M (1999) Note on the generalization of calculations. Theor Comput Sci 224(1–2):3–11CrossRefGoogle Scholar
  7. Baaz M, Pudlák P (1993) Kreisel’s conjecture for \(l\exists _1\). In: Clote P, Krajíček J (eds) Arithmetic proof theory and computational complexity. Oxford University Press, Oxford, pp 30–49Google Scholar
  8. Bourbaki N (1950) The architecture of mathematics. Am Math Mon 57(4):221–232CrossRefGoogle Scholar
  9. Dieudonné J (1985) Geschichte der Mathematik, 1700–1900. Vieweg, BerlinGoogle Scholar
  10. Došen K, Petrić Z (2004) Proof-theoretical coherence. KCL Publications, LondonGoogle Scholar
  11. Ganesalingam M, Gowers WT (2013) A fully automatic problem solver with human-style output. CoRR, abs/1309.4501Google Scholar
  12. Gray J (2013) Henri Poincaré. Princeton University Press, PrincetonGoogle Scholar
  13. Hales TC (2014) Mathematics in the age of the Turing machine. In: Downey R (ed) Turing’s legacy: developments from Turing’s ideas in logic, volume 42 of lecture notes in logic. ASL and Cambridge University Press, pp 253–298Google Scholar
  14. Hardy GH, Wright EM (1960) An introduction to the theory of numbers, 4th edn. Oxford University Press, OxfordGoogle Scholar
  15. Hughes B (1987) Mathematical proof: origins and development. In: Grattan-Guinness I (ed) History in mathematics education. Number 21 in Cahiers d’Histoire et de Philosophie des Sciences. Nouvelle Série, pp 65–72. Société Française d’Histoire des Sciences et des Techniques. BelinGoogle Scholar
  16. Kahle R (2014) Towards the structure of mathematical proof. In: England M et al (eds) Joint proceedings of the MathUI, OpenMath and ThEdu workshops and work in progress track at CICM, vol 1186 of CEUR workshop proceedingsGoogle Scholar
  17. Krajíček J, Pudlák P (1988) The number of proof lines and the size of proofs in first order logic. Arch Math Log 27:69–84CrossRefGoogle Scholar
  18. Lambek J (1968) Deductive systems and categories. I: syntactic calculus and residuated categories. Math Syst Theory 2:287–318CrossRefGoogle Scholar
  19. Lambek J (1969) Deductive systems and categories II. Standard constructions and closed categories. In: Hilton P (ed) Category theory, homology theory and applications, volume 86 of lecture notes in mathematics, vol 86. Springer, pp 76–122Google Scholar
  20. Lamport L (1995) How to write a proof. Am Math Mon 102(7):600–608CrossRefGoogle Scholar
  21. Lamport L (2012) How to write a 21st century proof. J Fixed Point Theory Appl 11:43–63CrossRefGoogle Scholar
  22. Leron U (1983) Structuring mathematical proofs. Am Math Mon 90(3):174–185CrossRefGoogle Scholar
  23. Loomis ES (1968) The Pythagorean proposition. Ann Arbor Michigan, 1968. Reprint of the 2nd edition from 1940. First published in 1927Google Scholar
  24. Mancosu P (2000) On mathematical explanation. In: Grosholz E, Breger H (eds) The growth of mathematical knowledge. Kluwer, Netherlands, pp 103–119CrossRefGoogle Scholar
  25. Mancosu P (2001) Mathematical explanation: problems and prospects. Topoi 20:97–117CrossRefGoogle Scholar
  26. Necula GC (1997) Proof-carrying code. In: POPL ’97. ACM Press, pp 106–119Google Scholar
  27. Prawitz D (1965) Natural deduction, a proof-theoretical study. Almquist and Wiksell, StockholmGoogle Scholar
  28. Prawitz D (1971) Ideas and results in proof theory. In: Fenstad JE (ed) Proceedings of the Second Scandinavian Logic Symposium. North-Holland, pp 235–307Google Scholar
  29. Robertson N, Sanders DP, Seymour PD, Thomas R (1996) A new proof of the four colour theorem. Electron Res Announc Am Math Soc 2:17–25CrossRefGoogle Scholar
  30. Scott D (2006) Foreword. In: Wiedijk F (ed) The seventeen provers of the world, volume 3600 of lecture notes in computer science. Springer, pp vii–xiiGoogle Scholar
  31. Steiner M (1978) Mathematical explanation. Philos Stud 34:133–151CrossRefGoogle Scholar
  32. Straßburger L (2005) What is a logic, and what is a proof? In: Beziau J-Y (ed) Logica Universalis. Birkhäuser, Basel, pp 135–145CrossRefGoogle Scholar
  33. Trybulec A (2006) Mizar. In: Wiedijk F (ed) The seventeen provers of the world, volume 3600 of lecture notes in computer science, vol 3600. Springer, pp 20–23Google Scholar
  34. Wenzel M (1999) Isar—a generic interpretative approach to readable formal proof documents. In: Bertot Y, Dowek G, Hirschowitz A, Paulin C, Théry L (eds) Theorem proving in higher order logics, volume 1690 of lecture notes in computer science. Springer, pp 167–184Google Scholar
  35. Wenzel M (2002) Isabelle/Isar—a versatile environment for human-readable formal proof documents. PhD thesis, Institut für Informatik, Technische Universität MünchenGoogle Scholar
  36. Wenzel M, Paulson L (2006) Isabelle/Isar. In: Wiedijk F (ed) The seventeen provers of the world, volume 3600 of lecture notes in computer science. Springer, pp 41–49Google Scholar
  37. Wiedijk F (ed) (2006) The seventeen provers of the world, volume 3600 of lecture notes in computer science. SpringerGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.CENTRIA, CMA, and DM, FCTUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations