Axiomathes

, Volume 22, Issue 1, pp 31–52 | Cite as

Monads and Mathematics: Gödel and Husserl

Invited paper

Abstract

In 1928 Edmund Husserl wrote that “The ideal of the future is essentially that of phenomenologically based (“philosophical”) sciences, in unitary relation to an absolute theory of monads” (“Phenomenology”, Encyclopedia Britannica draft) There are references to phenomenological monadology in various writings of Husserl. Kurt Gödel began to study Husserl’s work in 1959. On the basis of his later discussions with Gödel, Hao Wang tells us that “Gödel’s own main aim in philosophy was to develop metaphysics—specifically, something like the monadology of Leibniz transformed into exact theory—with the help of phenomenology.” (A Logical Journey: From Gödel to Philosophy, p. 166) In the Cartesian Meditations and other works Husserl identifies ‘monads’ (in his sense) with ‘transcendental egos in their full concreteness’. In this paper I explore some prospects for a Gödelian monadology that result from this identification, with reference to texts of Gödel and to aspects of Leibniz’s original monadology.

Keywords

Husserl Gödel Leibniz Monadology Logic 

References

  1. Feferman S et al (eds) (1986) Kurt Gödel: collected works, vol 1. Oxford University Press, OxfordGoogle Scholar
  2. Feferman S et al (eds) (1990) Kurt Gödel: collected works, vol II. Oxford University Press, OxfordGoogle Scholar
  3. Feferman S et al (eds) (1995) Kurt Gödel: collected works, vol III. Oxford University Press, OxfordGoogle Scholar
  4. Gödel K (*193?) Undecidable diophantine propositions. In: Feferman et al. (eds) 1995, pp 164–175Google Scholar
  5. Gödel K (*1951) Some basic theorems on the foundations of mathematics and their implications. In: Feferman et al. (eds) 1995, pp 304–323Google Scholar
  6. Gödel K (*1953/1959) III and V. Is mathematics syntax of language? In: Feferman et al. (eds) 1995, pp 334–363Google Scholar
  7. Gödel K (*1961/?) The modern development of the foundations of mathematics in the light of philosophy. In Feferman et al. (eds) 1995, pp 374–387Google Scholar
  8. Gödel K (1964) What is Cantor’s continuum problem? In: Feferman et al. (eds) 1990, pp 254–270. Revised version of Gödel 1947Google Scholar
  9. Gödel K (1972a) On an extension of finitary mathematics which has not yet been used. In: Feferman et al. (eds) 1990, pp 271–280. Revised version of Gödel 1958Google Scholar
  10. Gödel K (1972b) Some remarks on the undecidability results. In: Feferman et al. (eds) 1990, pp 305–306Google Scholar
  11. Husserl E (1900–1901) Logical investigations, vols I, II (trans: 2nd edn. by Findlay JN). Routledge and Kegan Paul, London, 1973Google Scholar
  12. Husserl E (1922) The London lectures (syllabus of a course of four lectures). In: McCormick P, Elliston F (eds) Husserl: shorter works. University of Notre Dame Press, pp 68–74, 1981Google Scholar
  13. Husserl E (1923–1924) Erste Philosophie. Erster Teil: Kritische Ideengeschichte. Husserliana, vol 7. Nijhoff, The Hague, 1956Google Scholar
  14. Husserl E (1923–1924) Erste Philosophie. Zweiter Teil: Theorie der phänomenologischen Reduktion. Husserliana, vol 8. Nijhoff, The Hague, 1959Google Scholar
  15. Husserl E (1927–1928) Phenomenology (drafts of the Encyclopedia Britannica Article). In: Psychological and transcendental phenomenology and the confrontation with Heidegger (1927–1931). Kluwer, Dordrecht, pp 83–194, 1997Google Scholar
  16. Husserl E (1931) Cartesian meditations. An introduction to phenomenology. English translation: (trans: Cairns D). Martinus Nijhoff, The Hague, 1960Google Scholar
  17. Leibniz GW (1677) On the universal science: characteristic. In: Weiner P (ed) Leibniz: selections. Charles Scribner’s Sons, New York, 1951Google Scholar
  18. Leibniz GW (1714a) Principles of nature and grace, based on reason. In: Weiner P (ed) Leibniz: selections. Charles Scribner’s Sons, 1951Google Scholar
  19. Leibniz GW (1714b) Monadology. In: Weiner P (ed) Leibniz: selections. Charles Scribner’s Sons, New York, 1951Google Scholar
  20. Mahnke D (1917) Eine neue Monadologie. Kantstudien Ergänzungsheft 39. Reuther and Reichard, BerlinGoogle Scholar
  21. Mahnke D (1925) Leibnizens Synthese von Universalmathematik und Individualmetaphysik. Erster Teil. In: Jahrbuch für Philosophie und phänomenologische Forschung, vol VII, pp 304–611Google Scholar
  22. Tieszen R (1992) Kurt Gödel and phenomenology. Phil Sci 59(2):176–194. Reprinted in Tieszen 2005Google Scholar
  23. Tieszen R (1998) Gödel’s path from the incompleteness theorems (1931) to phenomenology (1961). Bull Symb Logic 4(2):181–203. Reprinted in Tieszen 2005Google Scholar
  24. Tieszen R (2002) Gödel and the intuition of concepts. Synthese 133(3):363–391. Reprinted in Tieszen 2005Google Scholar
  25. Tieszen R (2005) Phenomenology, logic, and the philosophy of mathematics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Tieszen R (2006) After Gödel: mechanism, reason and realism in the philosophy of mathematics. Phil Math 14(2):229–254Google Scholar
  27. Tieszen R (2010) Mathematical realism and transcendental phenomenological idealism. In: Hartimo M (ed) Phenomenology and mathematics. Springer, Berlin, pp 1–22CrossRefGoogle Scholar
  28. van Atten M, Kennedy J (2003) On the philosophical development of Kurt Gödel. Bul Symb Logic 9:425–476CrossRefGoogle Scholar
  29. Wang H (1996) A logical journey: from Gödel to philosophy. MIT Press, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of PhilosophySan José State UniversitySan JoseUSA

Personalised recommendations