, Volume 21, Issue 2, pp 331–345 | Cite as

Quantum Theory Beyond the Physical: Information in Context

  • Kirsty Kitto
  • Brentyn Ramm
  • Laurianne Sitbon
  • Peter Bruza
Original Paper


Measures and theories of information abound, but there are few formalised methods for treating the contextuality that can manifest in different information systems. Quantum theory provides one possible formalism for treating information in context. This paper introduces a quantum inspired model of the human mental lexicon. This model is currently being experimentally investigated and we present a preliminary set of pilot data suggesting that concept combinations can indeed behave non-separably.


Information Context Concept combination Non-separability Separability tests Generalised quantum model human mental lexicon Spreading activation Spooky activation at a distance 


  1. 1.
    Ballentine L (1998) Quantum mechanics: a modern development. World Scientific, SingaporeGoogle Scholar
  2. 2.
    Bruza P, Kitto K, Nelson D, McEvoy C (2009) Is there something quantum-like about the human mental lexicon?. J Math Psychol 53:362–377CrossRefGoogle Scholar
  3. 3.
    Clauser JF, Horne MA (1974) Experimental consequences of objective local theories. Phys Rev D 10(2):526–535CrossRefGoogle Scholar
  4. 4.
    Collins AM, Loftus EF (1975) A spreading-activation theory of semantic processing. Psychol Rev 82(6):407–428CrossRefGoogle Scholar
  5. 5.
    Gärdenfors P (2000) Conceptual spaces: the geometry of thought. MIT Press, Cambridge, MAGoogle Scholar
  6. 6.
    Grangier P (2003) Contextual objectivity and quantum holism. arXiv:quant-ph/0301001v2, 2003Google Scholar
  7. 7.
    Isham CJ (1995) Lectures on quantum theory. Imperial College Press, LondonGoogle Scholar
  8. 8.
    Kitto K (2008) High end complexity. Int J Gen Syst 37(6):689–714CrossRefGoogle Scholar
  9. 9.
    Kitto K (2009) Science and subjectivity. Literary Paritantra (Syst) 1(3,4):18–28Google Scholar
  10. 10.
    Kitto K, Bruza P. Modelling ‘high end complexity’ using the quantum formalism (under review)Google Scholar
  11. 11.
    Kitto K, Ramm B, Bruza PD, Sitbon L (2010) Testing for the non-separability of bi-ambiguous words. In: Proceedings of the AAAI fall symposium on quantum informatics for cognitive, social, and semantic processes (QI 2010), AAAI PressGoogle Scholar
  12. 12.
    Laloë F (2001) Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems. Am J Phys 69(6):655–701CrossRefGoogle Scholar
  13. 13.
    Losee RM (1990) The science of information. Library and Information Science. Academic Press, New YorkGoogle Scholar
  14. 14.
    Mermin ND (1993) Hidden variables and the two theorems of John Bell. Rev Mod Phys 65(3):803–815CrossRefGoogle Scholar
  15. 15.
    Nelson D, McEvoy C, Pointer L (2003) Spreading activation or spooky action at a distance? J Exp Psychol: Learn Mem Cogn 29(1):42–52CrossRefGoogle Scholar
  16. 16.
    Nelson D, McEvoy C, Schreiber T (2004) The University of South Florida, word association, rhyme and word fragment norms. Behav Res Method Instrum Comput 36:408–420CrossRefGoogle Scholar
  17. 17.
    Nelson DL, McEvoy CL (2007) Entangled associative structures and context. Stanford University, AAAI PressGoogle Scholar
  18. 18.
    Nelson DL, Schreiber TA, McEvoy CL (1992) Processing implicit and explicit representations. Psychol Rev 99(2):322–348CrossRefGoogle Scholar
  19. 19.
    Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423Google Scholar
  20. 20.
    Van Rijsbergen C (2004) The geometry of information retrieval. Cambridge University Press, UKCrossRefGoogle Scholar
  21. 21.
    Widdows D (2004) Geometry and meaning. CSLI Publications, StanfordGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Kirsty Kitto
    • 1
  • Brentyn Ramm
    • 1
  • Laurianne Sitbon
    • 1
  • Peter Bruza
    • 1
  1. 1.Queensland University of TechnologyBrisbaneAustralia

Personalised recommendations