, Volume 21, Issue 2, pp 303–313

Distance and Similarity Measures in Generalised Quantum Theory

Original Paper


A summary of recent experimental results shows that entanglement can be generated more easily than before, and that there are improved chances for its persistence. An eminent finding of Generalised Quantum Theory is the insight that the notion of entanglement can be extended, such that, e.g., psychological or psychophysical problem areas can be included, too. First, a general condition for entanglement to occur is given by the term ‘common prearranged context’. A formalised treatment requires a quantitative definition of the similarity or dissimilarity between two complex structures which takes their internal structures into account. After some specific remarks on distance, metrics, and semi-metrics in mathematics, a procedure is described for setting up a similarity function with the required properties. This procedure is in analogy with the two-step character of measurement and with the well-known properties of perspective notions. A general methodology can be derived for handling perspective notions. Finally, these concepts supply heuristic clues towards a formalised treatment of the notions of ‘meaning’ and ‘interpretation’.


Distance function Entanglement Generalised Quantum Theory Macro-entanglement Metric Perspective notions Semi-metric Similarity measure 


  1. Altewischer E, van Exter MP, Woerdman JP (2002) Plasmon-assisted transmission of entangled photons. Nature 418:304–306CrossRefGoogle Scholar
  2. Amico L et al (2008) Entanglement in many-body systems. Rev Mod Phys 80:517–576CrossRefGoogle Scholar
  3. Aspect A, Grangier P, Roger G (1982a) Experimental realization of Einstein-Podolsky-Rosen Gedankenexperiment: a new violation of Bell’s inequalities. Phys Rev Lett 49:91–94CrossRefGoogle Scholar
  4. Aspect A, Dalibard J, Roger G (1982b) Experimental tests of Bell’s inequalities using time-varying analysers. Phys Rev Lett 49:1804–1807CrossRefGoogle Scholar
  5. Atmanspacher H, Primas H, Wertenschlag-Birkhäuser E (eds) (2001) Der Pauli-Jung-Dialog und seine Bedeutung für die moderne Wissenschaft. Springer, BerlinGoogle Scholar
  6. Atmanspacher H, Römer H, Walach H (2002) Weak quantum theory: complementarity and entanglement in physics and beyond. Found Phys 32:325–329CrossRefGoogle Scholar
  7. Bebendorf M (2008) Hierarchical matrices. Springer, BerlinGoogle Scholar
  8. Boyer V et al (2008) Entangled images from four-wave mixing. Science 321(5888):544–547CrossRefGoogle Scholar
  9. Briegel HJ, Popescu S (2008) Entanglement and intra-molecular cooling in biological systems? A quantum thermodynamic perspective, arXiv:quant-ph/0806.4552Google Scholar
  10. Brukner C, Vedral V, Zeilinger A (2006) Crucial role of quantum entanglement in bulk properties of solids. Phys Rev A 73:012110CrossRefGoogle Scholar
  11. Cai J, Guerreschi GG, Briegel HJ (2010) Quantum control and entanglement in a chemical compass. Rev Phys Lett 104:220502CrossRefGoogle Scholar
  12. Deza MD, Deza E (2009) Encyclopedia of distances. Springer, BerlinCrossRefGoogle Scholar
  13. Drewes F (2007) Graph grammar bibliography. Cited 12 June 2010
  14. Eisert J, Gross D (2006) Multi-particle entanglement, arXiv:quant-ph/0505149v2Google Scholar
  15. Elitzur AC, Dolev S (2003) Is there more to T? Why time’s description in modern physics is still incomplete. In: Buccheri R et al (eds) The nature of time: geometry, physics and perception. Kluwer, Dordrecht, pp 297–306Google Scholar
  16. Ferreira A, Guerreiro A, Vedral V (2006) Macroscopic thermal entanglement due to radiation pressure. Phys Rev Lett 96:060407CrossRefGoogle Scholar
  17. Gauger E et al (2009) Quantum coherence and entanglement in the avian compass. arXiv: 0906.3725v3 [quant-ph]Google Scholar
  18. Gernert D (1997) Graph grammars as an analytical tool in physics and biology. BioSystems 43:179–187CrossRefGoogle Scholar
  19. Gernert D (2000) Towards a closed description of observation processes. BioSystems 54:165–180CrossRefGoogle Scholar
  20. Haken H (2006) Information and self-organization, 3rd edn. Berlin, SpringerGoogle Scholar
  21. Jost JD et al (2009) Entangled mechanical oscillators. Nature 459:683–685CrossRefGoogle Scholar
  22. Julsgaard B, Kozhekin A, Polzik ES (2001) Experimental long-lived entanglement of two macroscopic objects. Nature 413:400–403CrossRefGoogle Scholar
  23. Jung CG (1955) The interpretation of nature and the psyche. Pantheon, New YorkGoogle Scholar
  24. Kofler J, Brukner C (2006) Entanglement distribution revealed by macroscopic observations, arXix:quant-ph/0603208Google Scholar
  25. Kowalski G (1997) Information retrieval systems: theory and implementation. Kluwer, BostonGoogle Scholar
  26. Leggett AJ (2003) Nonlinear hidden variable theorems and quantum mechanics: an incompatibility theorem. Found Phys 33:1469–1493CrossRefGoogle Scholar
  27. Lucadou Wv, Römer H, Walach H (2007) Synchronistic phenomena as entanglement correlations in Generalised Quantum Theory. J Conscious Stud 14:50–74Google Scholar
  28. Markham G et al (2008) Survival of entanglement in thermal states. Eur Phys Lett 81:40006CrossRefGoogle Scholar
  29. Müller-Ebhardt H et al (2008) Entanglement of macroscopic test masses and the standard quantum limit in laser interferometry. Phys Rev Lett 100:013601CrossRefGoogle Scholar
  30. Perdigues Armengol JM et al (2008) Quantum communications at ESA: towards a space experiment on the ISS. Acta Astronautica 63:165–178CrossRefGoogle Scholar
  31. Vedral V (2003) Entanglement hits the big time. Nature 425:28–29CrossRefGoogle Scholar
  32. Vedral V (2008) Quantifying entanglement in macroscopic systems. Nature 453:1004–1007CrossRefGoogle Scholar
  33. Wagner K et al (2008) Entangling the spatial properties of laser beams. Science 321(5888):541–543CrossRefGoogle Scholar
  34. Walach H et al (2004) Homeopathic proving symptoms: result of a local, non-local, or placebo process? A blinded, placebo-controlled pilot study. Homeopathy 93:179–185CrossRefGoogle Scholar
  35. Wheeler JA (1984) Bits, quanta, meaning. In: Giovannini A et al (ed) Problems of theoretical physics, Salerno. Reprint in: Giovannini A et al (ed) Festschrift in honour of Eduardo R. Caianiello. World Scientific, Singapore 1989, pp 133–154Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Technische Universität MünchenMünchenGermany

Personalised recommendations