, Volume 21, Issue 3, pp 439–454 | Cite as

Some Thoughts on A. H. Louie’s “More Than Life Itself: A Reflection on Formal Systems and Biology”

  • Claudio Gutiérrez
  • Sebastián Jaramillo
  • Jorge Soto-Andrade
Original Paper


We review and discuss A. H. Louie’s book “More than Life Itself: A Reflexion on Formal Systems and Biology” from an interdisciplinary viewpoint, involving both biology and mathematics, taking into account new developments and related theories.


Relational biology Systems biology (M,R) systems Robert Rosen Efficient causation Autopoiesis Organizational closure Metabolism Computability Self-reference Ouroborus equation 



We would like to express our deepest gratitude to Juan-Carlos Letelier and Ricardo Honorato for useful suggestions and discussions on (M,R) system theory and its future challenges. Last but not least, we would like to thank Athel Cornish-Bowden for his helpful suggestions for the improvement of this manuscript. Jorge Soto-Andrade was partially supported by PBCT- CONICYT, Project CIE-05 and FONDECYT Project 1070246.


  1. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113CrossRefGoogle Scholar
  2. Bedau M (1992) Where’s the good in teleology? Philos Phenomenol Res 52(4):781–806CrossRefGoogle Scholar
  3. Cárdenas ML, Letelier J-C, Gutierrez C, Cornish-Bowden A, Soto-Andrade J (2010) Closure to efficient causation, computability and artificial life. J Theor Biol 263:79–92CrossRefGoogle Scholar
  4. Connes A (2005) A view of mathematics. Retrieved 4 July 2010 from
  5. Cornish-Bowden A (1995) Fundamentals of enzyme kinetics. Portland Press, LondonGoogle Scholar
  6. Cottam R, Ranson W, Vounckx R (2007) Re-mapping Robert Rosen’s (M,R)-systems. Chem Biodivers 4(10):2352–2368CrossRefGoogle Scholar
  7. Fontana W, Buss L (1996) The barrier of objects: from dynamical systems to bounded organizations. In: Casti J, Karlqvist A (eds) Boundaries and barriers. Addison-Wesley, Reading, pp 56–116Google Scholar
  8. Gánti T (1975) Organization of chemical reactions into dividing and metabolizing units: the chemotons. Bio Systems 7(1):15–21CrossRefGoogle Scholar
  9. Gánti T (2003) The principles of life. Oxford University Press, OxfordCrossRefGoogle Scholar
  10. Gayon J (2007) The concept of the gene in contemporary biology: continuity or dissolution? In: Fagot-Largeault A, Rahman S, Torres J-M (eds) The influence of genetics on contemporary thinking. Springer, Berlin, pp 81–95CrossRefGoogle Scholar
  11. Jaramillo S, Honorato-Zimmer R, Pereira U, Contreras D, Reynaert B, Hernandez V, Soto-Andrade J, Cardenas M, Cornish-Bowden A, Letelier J (2010) (M,R) systems and raf sets: common ideas, tools and projections. In: Artificial life conference XII, Odense, DenmarkGoogle Scholar
  12. Jaynes ET (2003) Probability theory, the logic of science. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. Kauffman SA (1986) Autocatalytic sets of proteins. J Theor Biol 119(1):1–24CrossRefGoogle Scholar
  14. Kauffman SA (1993) The origins of order. Oxford University Press, New YorkGoogle Scholar
  15. Lakoff G, Johnson M (1980) Metaphors we live by. Basic Books, New YorkGoogle Scholar
  16. Lakoff G, Nuñez R (2000) Where mathematics comes from. Basic Books, New YorkGoogle Scholar
  17. Lawvere FW (2006) Diagonal arguments and cartesian closed categories. Theory Appl Categories 15:1–13 (reprinted)Google Scholar
  18. Letelier J-C, Marín G, Mpodozis J (2003) Autopoietic and (M,R) systems. J Theor Biol 222:261–272CrossRefGoogle Scholar
  19. Letelier J-C, Soto-Andrade J, Guíñez Abarzúa F, Cornish-Bowden A, Cárdenas M-L (2006) Organizational invariance and metabolic closure: analysis in terms of (M,R) systems. J Theor Biol 238(4):949–961CrossRefGoogle Scholar
  20. Lodish H, Berk A, Kaiser C, Krieger M, Scott M, Bretscher A, Ploegh H, Matsudaira P (2007) Molecular cell biology, 6th edn. W. H. Freeman, San FranciscoGoogle Scholar
  21. Luhmann N (1995) Social systems. Stanford University Press, StanfordGoogle Scholar
  22. Luisi PL (2003) Autopoiesis: a review and a reappraisal. Naturwissenschaften 90:49–59Google Scholar
  23. Maturana H, Varela F (1980) Autopoiesis and cognition: the realisation of the living. D. Reidel Publishing Company, DordrechtGoogle Scholar
  24. Mossio M, Longo G, Stewart J (2009) A computable expression of closure to efficient causation. J Theor Biol 257(3):489–498CrossRefGoogle Scholar
  25. Newman A, Barabasi AL, Watts DJ (2006) The structure and dynamics of networks. Princeton University Press, PrincetonGoogle Scholar
  26. Nooren I, Thornton J (2003) Diversity of protein protein interactions. EMBO J 22(14):3486–3492CrossRefGoogle Scholar
  27. Petri CA, Reisig W (2008) Petri net. Scholarpedia 3(4):6477. doi: 10.4249/scholarpedia.6477 CrossRefGoogle Scholar
  28. Portin P (2009) The elusive concept of the gene. Hereditas 146:112–117CrossRefGoogle Scholar
  29. Rashevsky N (1938) Mathematical biophysics. Physicomathematical foundations of biology. University of Chicago Press, ChicagoGoogle Scholar
  30. Rice H (1953) Classes of recursively enumerable sets and their decision problems. Trans Am Math Soc 74:358–366CrossRefGoogle Scholar
  31. Rosen R (1958a) A relational theory of biological systems. Bull Math Biophys 20:245–260CrossRefGoogle Scholar
  32. Rosen R (1958b) The representation of biological systems from the standpoint of the theory of categories. Bull Math Biol 20(4):317–341Google Scholar
  33. Rosen R (1971) Some realizations of (M,R) systems and their interpretation. Bull Math Biophys 33:303–319CrossRefGoogle Scholar
  34. Rosen R (1973) On the dynamical realization of (M,R) systems. Bull Math Biophys 35:1–9Google Scholar
  35. Rosen R (1991) Life itself: a comprehensive inquiry into the nature, origin, and fabrication of life. Columbia University Press, New YorkGoogle Scholar
  36. Sapp J (2009) Just in time: Gene theory and the biology of the cell surface. Mol Reprod Dev 76:903–911CrossRefGoogle Scholar
  37. Scott DS (1972) Continuous lattices. In: Lawvere FW (ed) Toposes, algebraic geometry and logic (1971 Dalhousie University Conference), volume 274 of Lecture Notes in Mathematics. Springer, New York, pp 97–136Google Scholar
  38. Soto-Andrade J (2008) Mathematics as the art of seeing the invisible. In: Proceedings of ICME 11, TSG 20: visualization in the teaching and learning of mathematics. Retrieved 3 Aug 2010 from
  39. Soto-Andrade J, Varela FJ (1984) Self reference and fixed points. Acta Appl Mathematica 2:1–19CrossRefGoogle Scholar
  40. Steel M (2000) The emergence of a self-catalysing structure in abstract origin-of-life modelsGoogle Scholar
  41. Varela F (1975) A calculus for self-reference. Int J Gen Syst 2(1):5–24CrossRefGoogle Scholar
  42. Varela F (1979) Principles of biological autonomy. Elsevier, AmsterdamGoogle Scholar
  43. Varela F (1981) Autonomy and autopoiesis. In Gerhard R, Schwegler H (eds) Self-organizing systems: an interdisciplinary approach. Springer, Berlin, pp 14–23Google Scholar
  44. Varela F, Maturana H (1972) Mechanism and biological explanation. Philos Sci 39(3):378–382CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Claudio Gutiérrez
    • 1
  • Sebastián Jaramillo
    • 2
  • Jorge Soto-Andrade
    • 3
  1. 1.Departamento de Ciencias de la Computación, Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile
  2. 2.Departamento de Biología, Facultad de CienciasUniversidad de ChileSantiagoChile
  3. 3.Departamento de Matemáticas, Facultad de Ciencias, Centro de Investigación Avanzada en EducaciónUniversidad de ChileSantiagoChile

Personalised recommendations