Advertisement

Axiomathes

, Volume 19, Issue 3, pp 245–270 | Cite as

Cohomological Emergence of Sense in Discourses (As Living Systems Following Ehresmann and Vanbremeersch)

  • René Guitart
Original Paper

Abstract

As a significant extension of our previous calculus of logical differentials and moving logic, we propose here a mathematical diagram for specifying the emergence of novelty, through the construction of some “differentials” related to cohomological computations. Later we intend to examine how to use these “differentials” in the analysis of anticipation or evolution schemes. This proposal is given as a consequence of our comments on the Ehresmann–Vanbremeersch’s work on memory evolutive systems (MES), from the two points of view which are characterization of life and use of categorical modeling. It would not be possible to conceive of the “differentials” outside the frame of a MES (and specifically the description of the part played in a MES by the “co-regulators” and their “landscapes” for anticipation and emergence). Furthermore, we hope that this diagram will be useful to exhibit the “emergence of sense” in discourses, and this idea is supported here by a brief examination of how a discourse could be seen as a living system (and then could be studied as a MES).

Keywords

Novelty Emergence Differential Cohomology Category Colimit Living system Discourse Sense 

References

  1. Aczel P (1988) Non-well-founded Sets. CSLI, StanfordGoogle Scholar
  2. Alexander S (1920) Space, Time, and Deity, vol 1 & 2. MacMillan, LondonGoogle Scholar
  3. Ali SM, Zimmer RM (1997) The question concerning emergence. In: CASYS’97, Abstract book. First international conference on computing anticipatory systems CHAOS asblGoogle Scholar
  4. Allen TF (2006) A summary of the principles of hierarchy theory http://www.isss.org/hierarchy.htm
  5. Aristote (1991) Métaphysique tome 2 Livres H-N VrinGoogle Scholar
  6. Baas NA (1996) Thoughts on higher order structures. In: Symposium ECHO, Amiens 1996, pp 47–52Google Scholar
  7. Bada JL, Lazcano A (2003) Prebiotic soup revisiting the Miller experiment. Science 300:745–746CrossRefGoogle Scholar
  8. Baianu IC (2006) Robert Rosen’s work and complex systems biology. Axiomathes 16:25–34. doi: 10.1007/s10516-005-4204-z CrossRefGoogle Scholar
  9. Baianu IC (2007) Categorical ontology of levels and emergent complexity: an introduction. Axiomathes 17:209–222. doi: 10.1007/s10516-007-9013-0 CrossRefGoogle Scholar
  10. Baianu IC, Marinescu M (1974) A functorial construction of (M, R) systems. Rev Roum Math Pures Appl 19(4):388–391Google Scholar
  11. Baianu IC, Brown R, Georgescu G, Glazebrook JF (2006) Complex nonlinear biodynamics in categories, higher dimensional algebra and Łukasiewicz-Moisil topos: transformations of neuronal, genetic and neoplastic networks. Axiomathes 16:65–122. doi: 10.1007/s10516-005-3973-8 CrossRefGoogle Scholar
  12. Barbin E (2003) Les deux faces du théorème de Kleene et la question des machines, In J. Boniface (ed) Calculs et formes, (Actes du Colloque “Mathématiques : calculs et formes”, Université Toulouse Le Mirail, septembre 2000), Ellipses, pp. 24–52Google Scholar
  13. Barrow JD (2006) Gödel and physics, horizons of truth, kurt gödel centenary meeting, Vienna, 27–29 April 2006 http://arxiv.org/pdf/physics/0612253.pdf
  14. Bar-Yam Y (1997) Dynamics of Complex Systems. Westview Press, Boulder, ColoradoGoogle Scholar
  15. Bar-Yam Y (2004) A mathematical theory of strong emergence using multiscale variety. Complexity 9(6):15–24. doi: 10.1002/cplx.20029 CrossRefGoogle Scholar
  16. Bichat X (1962) Recherche physiologiques sur la vie et la mort (1800) Alliance culturelle du livre, Genève-Paris-BruxellesGoogle Scholar
  17. Blitz D (1992) Emergent evolution: qualitative novelty and the levels of reality. Kluwer, DordrechtGoogle Scholar
  18. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm Intelligence. Oxford University Press, OxfordGoogle Scholar
  19. Boschetti F (2005) CSIRO emergence interaction task http://www.per.marine.csiro.au/staff/Fabio.Boschetti/CSS_emergence.htm
  20. Broad CD (1925) The mind and its place in nature. Kegan Paul, LondonGoogle Scholar
  21. Calude CS, Jürgensen H (2005) Is complexity a source of incompleteness? Adv Appl Math 35:1–15. doi: 10.1016/j.aam.2004.10.003 CrossRefGoogle Scholar
  22. Capera D, Georgé JP, Gleizes M-P, Glize P (2003) Emergence of organisations, emergence of functions. In: Kudenko D, Kazakov D, Alonso E (eds) AISB’03 symposium on Adaptive Agents and Multi-Agent Systems. University of Wales, Aberystwyth, pp 103–108Google Scholar
  23. Cello J, Paul AV, Wimmer E (2002) Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297(05583):1016–1018. doi: 10.1126/science.1072266 CrossRefGoogle Scholar
  24. Chatin G (1982) Gödel’s theorem and information. Int J Theoritical Phys 21:941–954. doi: 10.1007/BF02084159 CrossRefGoogle Scholar
  25. Chauviré C (2008) L’œil mathématique. Essai sur la philosophie mathématique de Peirce, KiméGoogle Scholar
  26. Chemero A, Turvey M (2006) Complexity and “Closure to Efficient Cause” In: K. Ruiz-Mirazo and R. Barandiaran (eds) Proceedings of AlifeX: workshop on artificial autonomyGoogle Scholar
  27. Clot Y (2001) Bakhtine, Vygotsky et le travail. Martin Media Travailler 2(6):9–12Google Scholar
  28. Corning PA (2002) The re-emergence of “emergence”: a venerable concept in search of a theory. Complexity 7(6):18–30. doi: 10.1002/cplx.10043. www.complexsystems.org Google Scholar
  29. Da Costa NCA, Doria FA (1991) Undecidability and incompleteness in classical mechanics. Int J Theor Phys 30(8):1041–1073. doi: 10.1007/BF00671484 CrossRefGoogle Scholar
  30. Davidson D (1993) “Mental Events” In: Davidson (1980) Essays on actions and events, trad. P. Engels, Actions et événements, Paris, PUFGoogle Scholar
  31. Delahaye J-P (2009) Presque tout est indécidable!. Pour la Science 375:88–93Google Scholar
  32. Dubois DM (1998) Computing anticipatory systems with incursion and hyperincursion In: Computing anticipatory systems: CASYSfirst international conference, American Institute of Physics, AIP Confrence Proceedings 437, pp 3–29Google Scholar
  33. Dubois DM (2000) Review of incursive, hyper-incursive and anticipatory systems-foundation of anticipation In: Electromagnetism, AIP-conference Proceedings, 26 May, vol. 517, pp 3–30Google Scholar
  34. Eberhart R, Kennedy J (2001) Swarm intelligence. Morgan Kaufmann Acad Press, Los Altos, CAGoogle Scholar
  35. Ehresmann, C. (1968), Esquisses et types de structures algébriques, Bul. Inst. Pol. Din Iasi, serie nouaa, t. XIV (XVIII), fasc. 1-2, 1968. Reprint In: Charles Ehresmann 1981 Œuvres complètes et commentées, Esquisses et complétions, partie IV 1, éditée et commentée par Andrée Charles Ehresmann, AmiensGoogle Scholar
  36. Ehresmann A (Bastiani A) (1963) Systèmes guidables et problèmes d’optimisation, Laboratoire d’Automatique Théorique I (november 1963), Faculté des Sciences, CaenGoogle Scholar
  37. Ehresmann A (Bastiani A) (1964) Systèmes guidables et problèmes d’optimisation, Laboratoire d’Automatique Théorique II (juin 1964), Faculté des Sciences, CaenGoogle Scholar
  38. Ehresmann A (Bastiani A) (1965) Systèmes guidables et problèmes d’optimisation, Laboratoire d’Automatique Théorique III (juillet 1965), Compléments et erratums (déc. 1965), Faculté des Sciences, CaenGoogle Scholar
  39. Ehresmann A (2008) From Schwartz distributions to control and evolutive systems, CT08, Calais, June 22–28, http://pagesperso-orange.fr/ehres/Calais%20%202008.pdf
  40. Ehresmann AC, Vanbremeersch J-P (1987) Hierarchical evolutive systems: a mathematical model for complex systems. Bull Math Biol 49(1):13–50Google Scholar
  41. Ehresmann AC, Vanbremeersch J-P (1990) Hierarchical evolutive systems. In: Manikopoulos (ed) Proceedings of 8th international conference of cybernetics and systems, Newark, vol 1. The NIJT Press, New York, pp 320–327Google Scholar
  42. Ehresmann AC, Vanbremeersch J-P (1992a) Semantics and communication for memory evolutive systems. In: 6th international conference on systems research, Informatic and Cybernetics, Baden-BadenGoogle Scholar
  43. Ehresmann AC, Vanbremeersch J-P (1992b) Outils mathématiques pour modéliser les systèmes complexes. Cahiers Top Géo Diff Cat XXXIII(3):225–236Google Scholar
  44. Ehresmann AC, Vanbremeersch J-P (1993) Emergent properties for complexes systems In: Intersymp’93 Focus Symposium on Emergence, Baden-Baden 1993, 7 pGoogle Scholar
  45. Ehresmann AC, Vanbremeersch J-P (1996) Multiplicity principle and emergence in MES. J Syst Anal Model Simul 26:81–117Google Scholar
  46. Ehresmann AC, Vanbremeersch J-P (1999) http://perso.wanadoo.fr/vbm-ehr
  47. Ehresmann AC, Vanbremeersch J-P (2002) Emergence processes up to consciousness using the multiplicity principle and quantum physics. In: D Dubois (ed) A.I.P. conference proceedings (CASYS 2001), 627, 221–233Google Scholar
  48. Ehresmann AC, Vanbremeersch J-P (2006) The memory evolutive systems as a model of Rosen’s organisms—(metabolic, replication) systems. Axiomathes 16:137–154. doi: 10.1007/s10516-005-6001-0 CrossRefGoogle Scholar
  49. Ehresmann AC, Vanbremeersch J-P (2007) Memory evolutive systems. Hierarchy, emergence, cognition. Elsevier, AmsterdamGoogle Scholar
  50. Ehrig H, Kreowski H-J (1974), Power and initial automata in pseudocategories. In: E.G Manes (ed) Category theory for computation and control (Proceedings of the 1st international symposium). U. Mass, Amherst pp 162–169Google Scholar
  51. Fabre F (2005) Emergence et représentation http://www.dblogos.net/er/ER.pdf V2.0 r07, 212 p
  52. Fœssel M (2007) Paul Ricœur ou les puissances de l’imaginaire, introduction In: Ricœur Textes choisies et présentés par Michaël Fœssel et Fabien Lamouche, coll. Bibliothèque Essais, n 576, éd Points, p 7–22Google Scholar
  53. Goguen A (1971) Systems and minimal realization. IEEE conference on decision and control, Miami BeachGoogle Scholar
  54. Goldstein J (1999) Emergence as a Construct: history and issues. Emergence 1(1):49–71CrossRefGoogle Scholar
  55. Guitart R (1978) Des machines aux bimodules, 1978, texte n 30 in «Logiques, relations et structures dans les catégories», 2 volumes, Thèse d’Etat, Université d’Amiens, 8 juin 1979. http://pagesperso-orange.fr/rene.guitart/textespublications/rg30.pdf
  56. Guitart R (1980) Relations et carrés exacts. Ann Sc Math Que IV(2):103–125Google Scholar
  57. Guitart R (1986) On the geometry of computations. Cahiers Top Géo Diff Cat XXVII(4):107–137Google Scholar
  58. Guitart R (1994) L’idée de Logique Spéculaire, Journées Catégories, Algèbres, Esquisses, Néo-esquisses, Caen 27–30 September 1994, 6 pGoogle Scholar
  59. Guitart R (2003) Calcul d’assimilations, modalités et analyse d’images, In: J Boniface (ed) Calculs et formes, (Actes du Colloque “Mathématiques : calculs et formes”, Université Toulouse Le Mirail, September 2000), Ellipses, pp 175–189Google Scholar
  60. Guitart R (2004) Théorie cohomologique du sens, SIC, Amiens, 8 November 2003, compte-rendu 2004-10/Mars 2004, LAMFA CNRS UMR 6140, 39–47. (version allongée à 22 pages, le 9/02/2004 http://pagesperso-orange.fr/rene.guitart/textespublications/guitart04tcds.pdf)
  61. Guitart R (2005a) La structuration catégoricienne comme calcul des gestes mathématiques, 13 octobre 2005. In: Journées Aspects historiques et philosophiques de la théorie des catégories, ENS October 2005, http://www.diffusion.ens.fr/index.php?res=conf&idconf=934
  62. Guitart, R. (2005b) Le sens d’un discours comme mouvement de confusion entre identité et identitaire, Colloque Origine(s), Identité(s), Identification(s) AECF Lille, 15–16 October 2005Google Scholar
  63. Guitart R (2008) Pour une modélisation qualitative en termes de catégories, Preprint http://pagesperso-orange.fr/rene.guitart/textespreprints/guitart08modelcat.pdf, à paraître in Revue de Synthèse
  64. Haldane JBS (1929) The origin of life, Rationnalist Annual. Reprint In: JBS Haldane (1991) On being the right size and other essays, Oxford University PressGoogle Scholar
  65. Huxley T (1868) On the physical basis of life, Fortnightly Review 5 (n.s.) (1868): 129–45. In: Collected essays (1893–1894), vol 1, 130–165. http://aleph0.clarku.edu/huxley/CE1/PhysB.html
  66. Izhikevitch EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. The MIT Press, Cambridge, MA-USA; London, EnglandGoogle Scholar
  67. Joyce GF (1992) Directed molecular evolution. Sci Am 267(6):90–97CrossRefGoogle Scholar
  68. Kahane E (1962) La vie n’existe pas, Editions RationalistesGoogle Scholar
  69. Kainen PC (1971) Weak adjoint functors. Math Z 122:1–9. doi: 10.1007/BF01113560 CrossRefGoogle Scholar
  70. Kainen PC (2005) Category theory and living systems, Charles Ehresmann centennial, Amiens, October 7–9, 2005Google Scholar
  71. Kauffman S (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, OxfordGoogle Scholar
  72. Keller EF (1999) Le rôle des métaphores dans les progrès de la biologie, Institut SynthélaboGoogle Scholar
  73. Lewes GH (1875) Problems of life and mind (First series) vol 2, TrübnerGoogle Scholar
  74. Maurel M-C (2003) La Naissance de la Vie. De l’évolution prébiotique à l’évolution biologique, Paris, DunodGoogle Scholar
  75. Mayr E (1970) Populations, species and evolution. Harvard University Press, Cambridge, MAGoogle Scholar
  76. Mill JS (1843) A System of Logic, ratiocinative and inductive, 8th edition, Harper & Brothers, Franklin Square, 1882, http://www.gutenberg.org/etext/27942
  77. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529. doi: 10.1126/science.117.3046.528 CrossRefGoogle Scholar
  78. Minsky M (1988) The society of mind. Simon & Shuster, New YorkGoogle Scholar
  79. Monod J (1970) Le hasard et la nécessité, Seuil, ParisGoogle Scholar
  80. Monteiro JLR, Kogler JE Jr, Ribeiro JHR, Netto ML (2009) On building a memory evolutive system for application to learning and cognition modeling. In: Cutsuridis V, Hussain A, Barros AK, Aleksander I (eds) Brain inspired cognitive systems. Springer, BerlinGoogle Scholar
  81. Morange M (2002) Qu’est-ce que la vie? In: Colloque «Exobiologie, aspect historiques et épistémologiques» 15 mai 2001, Cahiers François Viète n 4, p 9–22Google Scholar
  82. Morange M (2003) La vie expliquée? 50 ans après la double-hélice, Odile jacobGoogle Scholar
  83. Morgan CL (1923) Emergent evolution. Williams and Norgate, LondonGoogle Scholar
  84. Morgan CL (1926) Life, mind and spirit. Williams and Norgate, LondonGoogle Scholar
  85. Morgan CL (1933) The emergence of novelty. Henry Holt and Co, New YorkGoogle Scholar
  86. Nageotte J (1922) L’organisation de la matière dans ses rapports avec la vie. Etudes d’anatomie générale et de morphologie expérimentale sur le tissu conjonctif et le nerf, AlcanGoogle Scholar
  87. Obtulowicz A (2007) Multigraphical membrane systems: a visual formalism for modeling complex systems in biology and evolving neural networks, Proceedings 8th workshop on membrane computing, Thessaloniki, June 25–28 2007 pod redakcj/a G. Elftherakisa et al., South-European Research Center, p 509–512. http://www.seerc.org/wmc8/procedings_web/pages509-512.pdf
  88. Oparin AI (1924) The origin of life, Proiskhozhdenie zhizny, Moscow, Trad. Ann Synge In: John Desmond Bernal (1967) The origin of life. Weidenfeld and Nicholson, LondonGoogle Scholar
  89. Paum G (2000) Computing with membranes. J Comput Syst Sci 61:108–143. doi: 10.1006/jcss.1999.1693 CrossRefGoogle Scholar
  90. Pichot A (1993) Histoire de la notion de vie. Gallimard, ParisGoogle Scholar
  91. Poli R (2001) The basic problem of the theory of levels of reality. Axiomathes 12(3–4):261–283. doi: 10.1023/A:1015845217681 CrossRefGoogle Scholar
  92. Poli R (2009) Anticipation and conflicts. Presented at the conference understanding conflicts, AarhusGoogle Scholar
  93. Rashevsky N (1954) Topology and life: in search of general mathematical principles in biology and sociology. Bull Math Biophys 16:317–348. doi: 10.1007/BF02484495 CrossRefGoogle Scholar
  94. Rashevsky N (1967) Organismic sets and biological epimorphism. Bull Math Biophys 29:389–393. doi: 10.1007/BF02476910 CrossRefGoogle Scholar
  95. Ricard J (2003a) What do we mean by biological complexity? Qu’entendons-nous par complexité biologique? C R Biologies 326:133–140. doi: 10.1016/S1631-0691(03)00064-7 CrossRefGoogle Scholar
  96. Ricard J (2003b) Complexité, émergence, information et causalité dans les systèmes biologiques, 13 pages. http://www.asmp.fr/travaux/gpw/philosc/rapport3/2ricard.pdf
  97. Ricard J (2008) Pourquoi le Tout est plus que la somme de ses parties Pour une approche scientifique de l’Emergence. Hermann, ParisGoogle Scholar
  98. Ricœur P (1986) L’imagination dans le discours et dans l’action, In: Du texte à l’action Essais d’herméneutique II, coll. Essais Points n 377, Seuil, p. 237–262Google Scholar
  99. Rosen R (1958) The representation of biological systems from the standpoint of the theory of categories. Bull Math Biophys 20:245–260. doi: 10.1007/BF02478302 CrossRefGoogle Scholar
  100. Rosen R (1985) Anticipatory systems. Pergamon Press, NYGoogle Scholar
  101. Rosen R (1986) Theoretical biology and complexity. Acad. Press, NYGoogle Scholar
  102. Rosen R (1991) Life itself. Columbia University Press, New YorkGoogle Scholar
  103. Ryan A (2007) Emergence is coupled to scope, not to level, Complexity 13(2):67–77. See also: http://arxiv.org/abs/nlin/0609011v1 Google Scholar
  104. Salanskis J-M (2007) L’herméneutique, le sens, le savoir, Colloque “Figures de l’herméneutique”, EHESS November 2007, http://jmsalanskis.free.fr/IMG/html/HermSensSav.html
  105. Schoffeniels E (1973) L’anti-hasard. Gauthier-Villars, ParisGoogle Scholar
  106. Schrödinger E (1944) What is life? Mind and matter. Cambridge U. P, CambridgeGoogle Scholar
  107. Sellars RW (1922) Evolutionary naturalism Open Court, Chicago http://www.ditext.com/rwsellars/bib-rws.html
  108. Simondon G (1964) L’individu et sa genèse physico-biologique. PUF, ParisGoogle Scholar
  109. Sinding C (1993) les métaphore en biologie: analogies ou outils de pensée? Intellectica, 1993/1, n 16, Biologie et Cognition; pp 85–89Google Scholar
  110. Stanford Encycl Phil (2006) Emergent properties, revision Mon oct 23, 2006 http://plato.stanford.edu/entries/properties-emergent/
  111. Tirard S (1997) Les travaux sur l’origine de la vie de la fin du dix-neuvième siècle jusqu’aux années 1970, ANRT, Thèse à la carte, 25 avril 1997Google Scholar
  112. Tirard S (2000) Les origines de la vie: un problème, des disciplines, ASTER 2000, n 30, INRP, pp 105–122Google Scholar
  113. Tirard S (2008a) Définir la vie: une nécessité pour définir les origines de la vie? Conférence au Centre François Viète, Nantes, 30 September 2008Google Scholar
  114. Tirard S (2008b) Defining life, from Buffon to Oparin”, to appear in Orig Life Evol Biosph. Special issueGoogle Scholar
  115. Vallée R (1986) Subjectivité et systèmes. In: B. Paulré (ed) Perspectives systémiques, Actes du Colloque de Cerisy. L’Interdisciplinaire, Limonest, 44–53Google Scholar
  116. Van Lier H (2006) L’individuation selon Gilbert Simondon http://henrivanlier.com/anthropogenie_locale/ontologie/simondon.pdf
  117. Varela F (1979) Principle of biological autonomy. Elsevier, North-HollandGoogle Scholar
  118. Vassort L and M (1949) Le Calcul Vivant, CE1, Hachette, ParisGoogle Scholar
  119. Vygotski LS (1934) Pensée et langage, Trad. F. Sève, édition La DisputeGoogle Scholar
  120. Zwirn HP (2006) Les systèmes complexes. Mathématiques et biologie, Odile Jacob, ParisGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Université Paris Diderot Paris 7ParisFrance

Personalised recommendations