Axiomathes

, Volume 17, Issue 3–4, pp 353–408

A Non-Abelian, Categorical Ontology of Spacetimes and Quantum Gravity

Original Paper

Abstract

A non-Abelian, Universal SpaceTime Ontology is introduced in terms of Categories, Functors, Natural Transformations, Higher Dimensional Algebra and the Theory of Levels. A Paradigm shift towards Non-Commutative Spacetime structures with remarkable asymmetries or broken symmetries, such as the CPT-symmetry violation, is proposed. This has the potential for novel applications of Higher Dimensional Algebra to SpaceTime structure determination in terms of universal, topological invariants of ‘hidden’ symmetry. Fundamental concepts of Quantum Algebra and Quantum Algebraic Topology, such as Quantum Groups, von Neumann and Hopf Algebras are first considered with a view to their possible extensions and future applications in Quantum Field theories. New, non-Abelian results may be obtained through Higher Homotopy, General van Kampen Theorems, Lie Groupoids/Algebroids and Groupoid Atlases, possibly with novel applications to Quantum Dynamics and Local-to-Global Problems, Quantum Logics and Logic Algebras. Many-valued Logics, Łukasiewicz–Moisil Logics lead to Generalized LM-Toposes as global representations of SpaceTime Structures in the presence of intense Quantum Gravitational Fields. Such novel representations have the potential to develop a Quantum/General Relativity Theory in the context of Supersymmetry, Supergravity, Supersymmetry Algebras and the Metric Superfield in the Planck limit of spacetime. Quantum Gravity and Physical Cosmology issues are also considered here from the perspective of multiverses, thus leading also to novel types of Generalized, non-Abelian, Topological, Higher Homotopy Quantum Field Theories (HHQFT) and Non-Abelian Quantum Algebraic Topology (NA-QAT) theories.

Keywords

Universal SpaceTime Ontology, Axioms of Abelian Categories and Categorical Ontology/the Theory of Levels The Paradigm Shift towards Non-Abelian Ontology, Relations and Abstract Structures Commutativity vs. Non-Commutativity, Symmetry vs. Asymmetry, CPT Symmetry violation Quantum Field Theory and Quantum Dynamics Quantum Logics and Logic Algebras, Many-valued Logics, Łukasiewicz–Moisil Logics and Generalized LM-Toposes (GLM) Quantum Fields, General Relativity, Supersymmetry, Supergravity, and the Metric Superfield Supersymmetry Algebras, Symmetry Breaking, and Quantum General Relativity Quantum Gravity and Physical Cosmology, Non-Abelian Gauge Theories and Higgs bosons, Chronotopoids and Multiverses Higher Dimensional Algebra (HDA) in SpaceTime Ontology, Higher Homotopy and General van Kampen Theorem (HHvKT) Local-to-Global Problems and Combinations of Local Procedures (COLP), Lie Groupoids, Groupoid Atlases and Graded Lie Algebroids in Non-Linear Quantum Gravity Fundamental Quantum Double Groupoids and Spacetime Topological Invariants 

References

  1. Alfsen EM, Schultz FW (2003) Geometry of state spaces of operator algebras. Birkäuser, Boston–Basel–BerlinGoogle Scholar
  2. Andersen PB, Emmeche C, Finnemann NO, Christiansen PV (2000) Downward causation. minds, bodies and matter. Aarhus University Press, Aarhus DKGoogle Scholar
  3. Baez J (2001) Higher dimensional algebra and Planck scale physics. In: Callender C, Hugget N (eds) Physics Meets Philosophy at the Planck scale. Cambridge University Press, pp 177–195Google Scholar
  4. Baez J, Dolan J (1995) Higher dimensional algebra and topological quantum field theory. J Math Phys 36:6073–6105CrossRefGoogle Scholar
  5. Baianu IC, Marinescu M (1968) Organismic supercategories: towards a unified theory of systems. Bull Math Biophys 30:148CrossRefGoogle Scholar
  6. Baianu IC (1970) Organismic supercategories: II. On multistable systems. Bull Math Biophys 32:539–561CrossRefGoogle Scholar
  7. Baianu IC (1971a) Organismic supercategories and qualitative dynamics of systems. Bull Math Biophys 33(3):339–354CrossRefGoogle Scholar
  8. Baianu IC (1971b) Categories, functors and quantum algebraic computations. In: Suppes P (ed) Proceed Fourth Intl Congress Logic-Mathematics-Philosophy of Science. September 1–4, 1971, BuchGoogle Scholar
  9. Baianu IC, Scripcariu D (1973) On adjoint dynamical systems. Bull Math Biophys 35(4):475–486CrossRefGoogle Scholar
  10. Baianu IC (1973) Some algebraic properties of (M,R) – systems. Bull Math Biophys 35:213–217Google Scholar
  11. Baianu IC, Marinescu M (1974) A Functorial Construction of (M,R) – Systems. Revue Roumaine de Mathematiques Pures et Appliquees 19:388–391Google Scholar
  12. Baianu IC (1977) A logical model of genetic activities in Łukasiewicz algebras: the non-linear theory. Bull Math Biol 39:249–258Google Scholar
  13. Baianu IC (1980) Natural transformations of organismic structures. Bull Math Biol 42:431–446Google Scholar
  14. Baianu IC (1983) Natural transformation models in molecular biology. In: Proceedings of the SIAM Natl. Meet. Denver, CO. http://cogprints.org/3675/; http://cogprints.org/3675/0l/Naturaltransfmolbionu6.pdf
  15. Baianu IC (1984) A molecular-set-variable model of structural and regulatory activities in metabolic and genetic networks. FASEB Proc 43:917Google Scholar
  16. Baianu IC (1987a) Computer models and automata theory in biology and medicine. In: Witten M (ed) Mathematical models in medicine, vol. 7. Pergamon Press, New York, 1513–1577; CERN Preprint No. EXT-2004-072: http://doe.cern.ch//archive/electronic/other/ext/ext-2004-072.pdf
  17. Baianu IC (1987b) Molecular Models of Genetic and Organismic Structures. In: Proceedings of relational biology symposium Argentina; CERN Preprint No. EXT-2004-067: http://doc.cern.ch/archive/electronic/other/ext/ext2004067/Molecular Models ICB3.doc
  18. Baianu IC (2004a) Quantum Nano-Automata (QNA): Microphysical Measurements with Microphysical QNA Instruments. CERN Preprint EXT–2004–125Google Scholar
  19. Baianu IC, Glazebrook JF, Georgescu G (2004) Categories of Quantum Automata and N-Valued Łukasiewicz Algebras in Relation to Dynamic Bionetworks, (M,R)–Systems and Their Higher Dimensional Algebra, Abstract and Preprint of Report: http://www.ag.uiuc.edu/fs401/QAuto.pdf and http://www.medicalupapers.com/quantum+automata+math+categories+baianu/
  20. Baianu IC (2006) Robert Rosen’s Work and Complex Systems Biology. Axiomathes 16(1–2):25–34CrossRefGoogle Scholar
  21. Baianu IC, Brown R, Glazebrook JF (2006a) Quantum Algebraic Topology and Field Theories, (manuscript in preparation) http://www.ag.uiuc.edu/fs40l/QAT.pdf
  22. Baianu IC, Brown R, Georgescu G, Glazebrook JF (2006b) Complex nonlinear biodynamics in categories, higher dimensional algebra and Łukasiewicz–Moisil topos: transformations of neuronal, genetic and neoplastic networks. Axiomathes 16(1–2):65–122CrossRefGoogle Scholar
  23. Baianu IC, Glazebrook JF, Georgescu G, Brown R (2007) Non-abelian Algebraic Topology Representations of Quantum Space–Time in a Generalized ‘Topos’ with a Quantum N–Valued Logic Classifier. (in submission)Google Scholar
  24. Baianu IC, Poli R (2008) From simple to super- and ultra- complex systems: a paradigm shift towards a Non-Abelian dynamics. In: Poli R et al (eds) Theory and applications of ontology, vol 1. Springer, Berlin, p 30Google Scholar
  25. Bennett M, Hacker P (2003) Philosophical foundations of neuroscience. Blackwell Publishing, LondonGoogle Scholar
  26. Birkhoff G, von Neumann J (1936) The logic of quantum mechanics. Ann Math 37:823–843CrossRefGoogle Scholar
  27. Brown R, Glazebrook JF, Baianu IC (2007) A conceptual construction for complexity levels theory in spacetime categorical ontology: Non-Abelian algebraic topology, many-valued logics and dynamic systems. Axiomathes 17:(in this issue)Google Scholar
  28. Brown R (2004) Crossed complexes and homotopy groupoids as non commutative tools for higher dimensional local-to-global problems. In: Proceedings of the Fields Institute Workshop on Categorical Structures for Descent and Galois Theory, Hopf Algebras and Semiabelian Categories (September 23–28, 2002), Fields Institute Communications 43, 101–130Google Scholar
  29. Brown R, Janelidze (2004) Galois theory and a new homotopy double groupoid of a map of spaces. Appl Categ Struct 12:63–80CrossRefGoogle Scholar
  30. Brown R, Higgins PJ, Sivera R (2008) Noncommutative algebraic topology, to appearGoogle Scholar
  31. Brown R, Paton R, Porter T (2004) Categorical language and hierarchical models for cell systems. In: Paton R, Bolouri H, Holcombe M, Parish JH, Tateson R (eds) Computation in Cells and Tissues - Perspectives and Tools of Thought. Natural Computing Series, Springer Verlag, Berlin, pp. 289–303Google Scholar
  32. Brown R, Porter T (2003) Category theory and higher dimensional algebra: potential descriptive tools in neuroscience. Proceedings of the International Conference on Theoretical Neurobiology, Delhi, February 2003, edited by Nandini Singh, National Brain Research Centre, Conference Proceedings 1:80–92Google Scholar
  33. Brown R, Hardie K, Kamps H, Porter T (2002) The homotopy double groupoid of a Hausdorff space. Theor. Appl. Categories 10:71–93.Google Scholar
  34. Brown R (2006) Topology and groupoids. BookSurge, LLC.Google Scholar
  35. Butterfield J, Isham CJ (2001) Spacetime and the philosophical challenges of quantum gravity. In: Callender C, Hugget N (eds) Physics meets philosophy at the Planck scale. Cambridge University Press, pp 33–89Google Scholar
  36. Butterfield J, Isham CJ 1998, 1999, 2000–2002, A topos perspective on the Kochen–Specker theorem I–IV, Int J Theor Phys, 37, No 11.: 2669–2733 38, No 3.: 827–859, 39, No 6.: 1413–1436, 41, No 4.: 613–639Google Scholar
  37. Chalmers DJ (1996) The Conscious Mind–In search of a fundamental theory. Oxford University Press, Oxford, UKGoogle Scholar
  38. Chevalley C (1946) The theory of Lie groups. Princeton Univ Press, Princeton, NJGoogle Scholar
  39. Chodos A, Detweiler S (1980) Where has the fifth diemsion gone? Phys Rev D 21:2167–2170CrossRefGoogle Scholar
  40. Connes A (1994) Noncommutative geometry. Academic Press, New York and LondonGoogle Scholar
  41. Cramer JG (1980) The transactional interpretation of quantum mechanics. Phys Rev D 22:362CrossRefGoogle Scholar
  42. Dalla Chiara M, Giuntini R, Greechie R (2004) Reasoning in quantum theory, trends in logic–studia logica library, vol 22. Kluwer, DordrechtGoogle Scholar
  43. Ehresmann C (1965) Catégories et structures. Dunod, ParisGoogle Scholar
  44. Ehresmann C (1966) Trends toward unity in mathematics. Cahiers de Topologie et Geometrie Differentielle 8:1–7Google Scholar
  45. Ehresmann AC, Vanbremeersch J-P (1987) Hierarchical evolutive systems: a mathematical model for complex systems. Bull of Math Biol 49(1):13–50Google Scholar
  46. Ehresmann AC, Vanbremeersch J-P (2006) The memory evolutive systems as a model of Rosen’s organisms. Axiomathes 16(1–2):13–50Google Scholar
  47. Eilenberg S, Mac Lane S (1945) The general theory of natural equivalences. Trans Am Math Soc 58:231–294CrossRefGoogle Scholar
  48. Elsasser MW (1981) A form of logic suited for biology. In: Robert R (ed) Progress in theoretical biology, vol 6. Academic Press, New York and London, pp 23–62Google Scholar
  49. Gabor D (1946) Theory of communication. J IEE (London) 93(III):429–457Google Scholar
  50. Georgescu G, Popescu D (1968) On algebraic categories. Revue Roumaine de Mathematiques Pures et Appliquées 13:337–342Google Scholar
  51. Georgescu G, Vraciu C. (1970) On the characterization of Łukasiewicz-Moisil algebras. J. Algebra 16(4):486–495.CrossRefGoogle Scholar
  52. Georgescu G (2006) N-valued logics and Łukasiewicz–Moisil algebras. Axiomathes 16(1–2):123–136CrossRefGoogle Scholar
  53. Grothendieck A (1971) Revêtements Étales et Groupe Fondamental (SGA1), chapter VI: Catégories fibrées et descente. Lecture Notes in Math. 224, Springer–Verlag, BerlinGoogle Scholar
  54. Grothendieck A (1957) Sur quelque point d-algébre homologique. Tohoku Math J 9:119–121Google Scholar
  55. Grothendieck A, Dieudonné J (1960–1967) Éléments de géométrie algébrique. Publ Inst des Hautes Etudes de Science Publ Math. : 4 (1960), 8(1961), 11 (1961), 17 (1963), 20 (1964), 24 (1965),28 (1966) and 32(1967)Google Scholar
  56. Hawking SW, Ellis GFR (1973) The Large Scale Structure of Space–Time. Cambridge University PressGoogle Scholar
  57. Heller A (1958) Homological algebra in Abelian categories. Ann of Math 68:484–525CrossRefGoogle Scholar
  58. Heller A, Rowe KA (1962) On the category of sheaves. Am J Math 84:205–216CrossRefGoogle Scholar
  59. Higgins PJ, Mackenzie KCH (1990) Fibrations and quotients of differentiable groupoids. J London Math Soc 42(1):101–110CrossRefGoogle Scholar
  60. Hurewicz E (1955) On the concept of fiber spaces. Proc Nat Acad Sci USA 41:956–961CrossRefGoogle Scholar
  61. van Kampen EH (1933) On the connection between the fundamental groups of some related spaces. Am J Math 55:261–267Google Scholar
  62. Kleisli H (1962) Homotopy theory in Abelian categories. Can J Math 14:139–169Google Scholar
  63. Knight JT (1970) On epimorphisms of non-commutative rings. Proc Cambridge Phil Soc 68:589–601CrossRefGoogle Scholar
  64. Krips H (1999) Measurement in quantum theory. In: Zalta EN (ed) The Stanford Encyclopedia of Philosophy (on line) (Winter 1999 Edition)Google Scholar
  65. Landsman NP (1998) Mathematical topics between classical and quantum mechanics. Springer Verlag, New YorkGoogle Scholar
  66. Lawvere FW (1966) The category of categories as a foundation for mathematics. In: Eilenberg S et al (eds) Proc conf categorical algebra- La Jolla. Springer–Verlag, Berlin, Heidelberg and New York, pp 1–20Google Scholar
  67. Lawvere FW (1963) Functorial semantics of algebraic theories. Proc Natl Acad Sci USA Math 50:869–872CrossRefGoogle Scholar
  68. Lawvere FW (1969) Closed Cartesian Categories. Lecture held as a guest of the Romanian Academy of Sciences, BucharestGoogle Scholar
  69. Lôfgren L (1968) An axiomatic explanation of complete self-reproduction. Bull Math Biophys 30:317–348CrossRefGoogle Scholar
  70. Lubkin S (1960) Imbedding of Abelian categories. Trans Am Math Soc 97:410–417CrossRefGoogle Scholar
  71. Mac Lane S (1963) Homology. Springer, BerlinGoogle Scholar
  72. Mac Lane S (2000) Categories for the working mathematician. Springer, New York–Berlin–HeidelbergGoogle Scholar
  73. Mac Lane S, Moerdijk I (1992) Sheaves in Geometry and Logic. A first introduction in topos theory. Springer-Verlag, New YorkGoogle Scholar
  74. Majid S (1995) Foundations of quantum group theory. Cambridge Univ PressGoogle Scholar
  75. Majid S (2002) A quantum groups primer. Cambridge Univ Press, Cambridge, UKGoogle Scholar
  76. Mallios A, Raptis I (2003) Finitary, causal and quantal vacuum Einstein gravity. Int J Theor Phys 42:1479CrossRefGoogle Scholar
  77. Manders KL (1982) On the space-time ontology of physical theories. Phil Sci 49(4):575–590CrossRefGoogle Scholar
  78. McGinn C (1995) Consciousness and space. In: Metzinger T (ed) Conscious experience. Imprint Academic, ThorvertonGoogle Scholar
  79. Mitchell B (1965) Theory of categories. Academic Press, LondonGoogle Scholar
  80. Mitchell B (1964) The full imbedding theorem. Am J Math 86:619–637CrossRefGoogle Scholar
  81. Oberst U (1969) Duality theory for Grothendieck categories. Bull Am Math Soc 75:1401–1408CrossRefGoogle Scholar
  82. Oort F (1970) On the definition of an Abelian category. Proc Roy Neth Acad Sci 70:13–02Google Scholar
  83. Ore O (1931) Linear equations in non-commutative fields. Ann Math 32:463–477CrossRefGoogle Scholar
  84. Penrose R (1994) Shadows of the mind. Oxford University Press, Oxford, UKGoogle Scholar
  85. Plymen RJ, Robinson PL (1994) Spinors in Hilbert Space, Cambridge Tracts in Math. 114, Cambridge Univ Press, Cambridge, UKGoogle Scholar
  86. Poli, Roberto (2006) Steps towards a synthetic methodology. In: Proc conf continuity and change: perspectives on science and religion. Metanexus Institute, June 2006, Philadelphia, PA. http://www.metanexus.net/conferences/pdf/conference2006/Poli.pdf
  87. Poli R (2008) Ontology: the categorical stance. In: Poli R et al (eds) Theory and applications of ontology, vol 1. Springer, Berlin (in press)Google Scholar
  88. Popescu N (1973) Abelian categories with applications to rings and modules, 2nd edn, 1975. Academic Press, New York 1975 (English translation by I.C. Baianu)Google Scholar
  89. Popescu N (1966 and 1967) Elements of Sheaf theory. St. Cerc. Mat. V/VI, 18–19:205–240; 945–991Google Scholar
  90. Popescu N (1967) La théorie générale de la décomposition. Rev Roum Math Pures et Appl 7:1365–1371Google Scholar
  91. Pribram KH (1991) Brain and Perception: Holonomy and Structure in Figural processing. Lawrence Erlbaum Assoc, HillsdaleGoogle Scholar
  92. Pribram KH (2000) Proposal for a quantum physical basis for selective learning. In: Farre (ed) Proceedings ECHO IV, pp 1–4Google Scholar
  93. Raptis I, Zapatrin RR (2000) Quantisation of discretized spacetimes and the correspondence principle. Intl Jour Theor Phys 39:1CrossRefGoogle Scholar
  94. Raptis I (2003) Algebraic quantisation of causal sets. Int Jour Theor Phys 39:1233CrossRefGoogle Scholar
  95. Rashevsky N (1965) The representation of organisms in terms of predicates. Bull Math Biophys 27:477–491CrossRefGoogle Scholar
  96. Rashevsky N (1969) Outline of a unified approach to physics, biology and sociology. Bull Math Biophys 31:159–198CrossRefGoogle Scholar
  97. Roos JE (1964) Sur la condition Ab6 et ses variantes dans les catégories abéliennes. CRAS Paris 257:2368–2371Google Scholar
  98. Roux A (1964) Sur une équivalence de catégories abéliennes. CRAS Paris 258:5566–5569Google Scholar
  99. Roberts JE (2004) More lectures on algebraic quantum field theory. In: Connes A et al Noncommutative Geometry. Springer, BerlinGoogle Scholar
  100. Rosen R (1985) Anticipatory systems. Pergamon Press, New YorkGoogle Scholar
  101. Rosen R (1958a) A relational theory of biological systems. Bull Math Biophys 20:245–260CrossRefGoogle Scholar
  102. Rosen R (1958b) The representation of biological systems from the standpoint of the theory of categories. Bull Math Biophys 20:317–341CrossRefGoogle Scholar
  103. Rovelli C (1998) Loop Quantum Gravity. In: Dadhich N et al (eds) Living reviews in relativity (refereed electronic journal) http://www.livingreviews.org/Articles/Volume1/1998 1 rovelli
  104. Russell B, Whitehead AN (1925) Principia mathematica. Cambridge Univ Press, CambridgeGoogle Scholar
  105. Ryle G (1949) The concept of mind. Hutchinson, LondonGoogle Scholar
  106. Silver L (1967) Non-commutative localization and applications. J Algebra 7:44–76CrossRefGoogle Scholar
  107. Sorkin RD (1991) Finitary substitute for continuous topology. Int J Theor Phys 30(7):923–947CrossRefGoogle Scholar
  108. Smolin L (2001) Three roads to quantum gravity. Basic Books, New YorkGoogle Scholar
  109. Spanier EH (1966) Algebraic Topology. McGraw Hill, New YorkGoogle Scholar
  110. Spencer-Brown G (1969) Laws of form. George Allen and Unwin, LondonGoogle Scholar
  111. Stenström B (1968) Direct sum decomposition in Grothendieck categories. Arkiv Math 7:427–432CrossRefGoogle Scholar
  112. Szabo RJ (2003) Quantum field theory on non-commutative spaces. Phys Rep 378:207–209CrossRefGoogle Scholar
  113. Takahashi H (1963) Adjoint pair of functors on Abelian categories. J Fac Soc Univ Tokyo 13:175–181Google Scholar
  114. Unruh WG (2001) Black holes, dumb holes, and entropy. In: Callender C, Hugget N (eds) Physics meets philosophy at the Planck scale. Cambridge University Press, Cambridge, UK, pp 152–173Google Scholar
  115. Várilly JC (1997) An introduction to noncommutative geometry arXiv:physics/9709045Google Scholar
  116. Velmans M (2000) Understanding consciousness. Routledge, LondonGoogle Scholar
  117. von Neumann J (1932) Mathematische Grundlagen der Quantenmechanik. Springer, BerlinGoogle Scholar
  118. Wess J, Bagger J (1983) Supersymmetry and supergravity. Princeton University Press, Princeton, NJGoogle Scholar
  119. Wheeler J, Zurek W (1983) Quantum theory and measurement. Princeton University Press, Princeton NJGoogle Scholar
  120. Weinberg S (1995–2000) The quantum theory of fields, vols I–III. Cambridge Univ Press, Cambridge, UKGoogle Scholar
  121. Weinstein A (1996) Groupoids: unifying internal and external symmetry. Notices Am Math Soc 43:744–752Google Scholar
  122. Whitehead JHC (1941) On adding relations to homotopy groups. Ann Math 42(2):409–428CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.FSHN and NPRE Departments, AFC-NMR and NIR Microspectroscopy FacilityUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.School of InformaticsUniversity of WalesGwyneddUK
  3. 3.Department of Mathematics and Computer ScienceEastern Illinois UniversityCharlestonUSA

Personalised recommendations