Advertisement

Axiomathes

, Volume 17, Issue 3–4, pp 223–352 | Cite as

Categorical Ontology of Complex Spacetime Structures: The Emergence of Life and Human Consciousness

  • I. C. Baianu
  • R. Brown
  • J. F. Glazebrook
Original Paper

Abstract

A categorical ontology of space and time is presented for emergent biosystems, super-complex dynamics, evolution and human consciousness. Relational structures of organisms and the human mind are naturally represented in non-abelian categories and higher dimensional algebra. The ascent of man and other organisms through adaptation, evolution and social co-evolution is viewed in categorical terms as variable biogroupoid representations of evolving species. The unifying theme of local-to-global approaches to organismic development, evolution and human consciousness leads to novel patterns of relations that emerge in super- and ultra- complex systems in terms of colimits of biogroupoids, and more generally, as compositions of local procedures to be defined in terms of locally Lie groupoids. Solutions to such local-to-global problems in highly complex systems with ‘broken symmetry’ may be found with the help of generalized van Kampen theorems in algebraic topology such as the Higher Homotopy van Kampen theorem (HHvKT). Primordial organism structures are predicted from the simplest metabolic-repair systems extended to self-replication through autocatalytic reactions. The intrinsic dynamic ‘asymmetry’ of genetic networks in organismic development and evolution is investigated in terms of categories of many-valued, Łukasiewicz–Moisil logic algebras and then compared with those obtained for (non-commutative) quantum logics. The claim is defended in this essay that human consciousness is unique and should be viewed as an ultra-complex, global process of processes. The emergence of consciousness and its existence seem dependent upon an extremely complex structural and functional unit with an asymmetric network topology and connectivities—the human brain—that developed through societal co-evolution, elaborate language/symbolic communication and ‘virtual’, higher dimensional, non-commutative processes involving separate space and time perceptions. Philosophical theories of the mind are approached from the theory of levels and ultra-complexity viewpoints which throw new light on previous representational hypotheses and proposed semantic models in cognitive science. Anticipatory systems and complex causality at the top levels of reality are also discussed in the context of the ontological theory of levels with its complex/entangled/intertwined ramifications in psychology, sociology and ecology. The presence of strange attractors in modern society dynamics gives rise to very serious concerns for the future of mankind and the continued persistence of a multi-stable biosphere. A paradigm shift towards non-commutative, or non-Abelian, theories of highly complex dynamics is suggested to unfold now in physics, mathematics, life and cognitive sciences, thus leading to the realizations of higher dimensional algebras in neurosciences and psychology, as well as in human genomics, bioinformatics and interactomics.

Keywords

Space, time, chronotopoids and spacetime, ST ST in automata vs. quantum automata and organisms Categorical ontology and the theory of levels Relational biology principles What is life and life’s multiple logics, LM- and Q-logic Organismic categories and relational patterns Abelian vs. non-Abelian theories Commutativity limitations in logics, mathematics, physics and emergent systems Łukasiewicz–Moisil logic algebras of genetic networks and interactomes Homo erectus, habilis and sapiens Australopithecus and chimpanzees (PanThe emergence of hominins and hominoides Cognitive science Mental representations and intentionality Brentano, Harman, Dennett, Field and Fodor’s philosophy of the mind Higher dimensional algebra of brain functions Higher Homotopy-General Van Kampen Theorems (HHvKT) and Non-Abelian Algebraic Topology (NAAT) Non-commutativity of diagrams and non-Abelian theories Non-Abelian categorical ontology Non-commutative topological invariants of complex dynamic state spaces Double groupoids and quantum double groupoids Natural transformations in molecular and relational biology Molecular class variables (mcv) Natural transformations and the Yoneda-Grothendieck Lemma/construction The Primordial MR and Archea unicellular organisms Evolution and memory evolutive systems (MES) The Thalamocortical model, categorical limits, colimits and MES Biogroupoids Variable groupoids, variable categories, variable topology and atlas structures Irreversibility and open systems Selective boundaries vs. horizons Universal temporality Occam’razor and reductionist approaches Super-complex systems and brain dynamics Global and local aspects of biological evolution in terms of colimits of variable biogroupoids Chains and compositions of local procedures (COLPs) of locally Lie groupoids in the evolution and co-evolution of species What is consciousness and synaesthesia? The human mind, human consciousness and brain dynamics viewed as non-Abelian ultra-complex processes Emergence of human consciousness through co-evolution/social interactions and symbolic communication Rosetta biogroupoids as models of human social interactions Objectivation and memes Anticipation and feedforward Systems of internal representations, propositional attitudes and sentence-analogs Tarskian compositional semantics Moral duality and strange attractors of modern society dynamics 

References

  1. Al-Agl FA, Brown R, Steiner R (2002) Multiple categories: the equivalence of a globular and cubical approach. Adv Math 170:711–118Google Scholar
  2. Albertazzi L (2005) Immanent realism – introduction to Franz Brentano. Springer, DordrechtGoogle Scholar
  3. Alexander S (1927). Space, time and deity. Vols. I and II. Macmillan, London, pp. 3–431.Google Scholar
  4. Alfsen EM, Schultz FW (2003) Geometry of state spaces of operator algebras. Birkäuser, Boston, Basel, BerlinGoogle Scholar
  5. Andersen PB, Emmeche C, Finnemann NO, Christiansen PV (2000) Downward causation. minds, bodies and matter. Aarhus University Press, Aarhus DKGoogle Scholar
  6. Aof ME-SA, Brown R (1992) The holonomy groupoid of a locally topological groupoid. Top Appl 47:97–113Google Scholar
  7. Arbib MA (2002) The mirror system, imitation and evolution of language. In: Nehaviv C, Dautenhahn K (eds) Imitation in animals and artefacts. MIT Press, Cambridge, MA, pp 229–280Google Scholar
  8. Ashby WR (1960) Design for a brain, 2nd edn. J Wiley and Sons, New YorkGoogle Scholar
  9. Atlan H (1972) L’Organisation biologique et la théorie de l’information. Hermann, ParisGoogle Scholar
  10. Atmanspacher H, Jahn RG (2003) Problems of reproducibility in complex mind matter systems. J Scientific Exploration 17(2):243–270Google Scholar
  11. Atyiah MF (1956) On the Krull-Schmidt theorem with applications to sheaves. Bull Soc Math France 84:307–317Google Scholar
  12. Austin JH (1998) Zen and the brain. MIT PressGoogle Scholar
  13. Baars B (1988) A cognitive theory of consciousness. Cambridge University PressGoogle Scholar
  14. Baars B, Franklin S (2003) How conscious experience and working memory interact. Trends Cogn Sci 7:166–172Google Scholar
  15. Baars B, Newman J (1994) A neurobiological interpretation of the global workspace theory of consciousness. In: Consciousness in philosophy and cognitive neuroscience. Erlbaum, Hildale NJGoogle Scholar
  16. Baez J (2001) Higher dimensional algebra and Planck scale physics. In: Callender C, Hugget N (eds) Physics meets philosophy at the Planck scale. Cambridge University Press, pp 177–195.Google Scholar
  17. Baez J, Dolan J (1995) Higher dimensional algebra and topological quantum field theory. J Math Phys 36:6073–6105.Google Scholar
  18. Baianu IC, Marinescu M (1968) Organismic supercategories: towards a unitary theory of systems. Bull Math Biophys 30:148–159Google Scholar
  19. Baianu IC, Marinescu M (1969) Cell synchrony and cancer. Abstracts, 3rd International Biophysics Congress. MIT, USA.Google Scholar
  20. Baianu IC (1970) Organismic supercategories: II. On multistable systems. Bull Math Biophys 32:539–561Google Scholar
  21. Baianu IC (1971a) Organismic Supercategories and Qualitative Dynamics of Systems. Bull Math Biophys 33(3):339–354Google Scholar
  22. Baianu IC (1971b) Categories, functors and quantum algebraic computations. In: Suppes P (ed) Proceedings of the fourth intl congress logic-mathematics-philosophy of science, September 1–4, 1971, BucharestGoogle Scholar
  23. Baianu IC (1972) Energetic considerations in EEG interpretation–neuron networks in categories. Ann Univ Bucuresti (Physics) 21:61–67.Google Scholar
  24. Baianu IC (1973) Some algebraic properties of (M,R)-systems. Bull Math Biophys 35:213–217Google Scholar
  25. Baianu IC, Marinescu M (1974). A functorial construction of (M,R)-systems. Rev Roum Math Pur et Appl 19:389–392.Google Scholar
  26. Baianu IC (1977) A logical model of genetic activities in Łukasiewicz algebras: the non-linear theory. Bull Math Biophys 39:249–258Google Scholar
  27. Baianu IC (1980a) Natural transformations of organismic structures. Bull Math Biophys 42:431–446Google Scholar
  28. Baianu IC (1980b) On partial order and structural disorder in biological systems. Letter to the editor. Bull Math Biophys 42:601–605Google Scholar
  29. Baianu IC (1983) Natural transformation models in molecular biology. In: Proceedings of the SIAM Natl Meet, Denver, CO.; Eprint: http://cogprints.org/3675/ http://cogprints.org/3675/0l/Naturaltransfmolbionu6.pdf
  30. Baianu IC (1984) A molecular-set-variable model of structural and regulatory activities in metabolic and genetic networks. FASEB Proceedings 43:917Google Scholar
  31. Baianu IC (1987a) Computer models and automata theory in biology and medicine. In: Witten M (ed) Mathematical models in medicine (vol 7, pp 1513–1577). Pergamon Press, New York, CERN Preprint No. EXT-2004-072: http://doe.cern.ch//archive/electronic/other/ext/ext-2004-072.pdf
  32. Baianu IC (1987b) Molecular models of genetic and organismic structures. In: Proceed. relational biology symp. Argentina; CERN Preprint No.EXT-2004-067 http://doc.cern.ch/archive/electronic/other/ext/ext2004067/MolecularModels-ICB3.doc
  33. Baianu IC (2004a) Quantum nano-automata (QNA): microphysical measurements with microphysical QNA instruments. CERN Preprint EXT-2004-125Google Scholar
  34. Baianu IC (2004b) Quantum interactomics and cancer mechanisms. Preprint No. 00001978 – http://bioline.utsc.utoronto.ca/archive/00001978/01/ Quantum Interactomics In: Cancer–Sept13k4E–cuteprt.pdf. http://bioline.utsc.utoronto.ca/archive/00001978/
  35. Baianu IC (2006) Robert Rosen’s work and complex systems biology. Axiomathes 16(1–2):25–34Google Scholar
  36. Baianu IC (2007a) Translational genomics and human cancer interactomics. Translational Oncogenomics (invited Review, submitted in November 2006)Google Scholar
  37. Baianu IC, Brown R, Glazebrook JF (2007b) A non-Abelian, categorical ontology of spacetimes and quantum gravity. Axiomathes 17: doi: 10.1007/s10516-007-9012-1
  38. Baianu IC, Poli R (2008) From simple to super- and ultra-complex systems: towards a non-abelian dynamics paradigm shift. In: Poli R et al (eds) Theory and applications of ontology. Springer, Berlin (in press)Google Scholar
  39. Baianu IC, Scripcariu D (1973) On adjoint dynamical systems. Bull Math Biophys 35(4):475–486Google Scholar
  40. Baianu IC, Marinescu M (1974) A functorial construction of (M,R)-systems. Revue Roumaine de Mathematiques Pures et Appliquees 19:388–391Google Scholar
  41. Baianu IC, Glazebrook JF, Georgescu G (2004) Categories of quantum automata and N-valued Łukasiewicz algebras in relation to dynamic bionetworks, (M,R)-systems and their higher dimensional algebra. Abstract and Preprint of Report: http://www.ag.uiuc.edu/fs401/QAuto.pdf and http://www.medicalupapers.com/quantum+automata+math+categories+baianu/
  42. Baianu IC, Brown R, Glazebrook JF (2006a) Quantum algebraic topology and field theories. http://www.ag.uiuc.edu/fs40l/QAT.pdf. (manuscript in preparation)
  43. Baianu IC, Brown R, Georgescu G, Glazebrook JF (2006b) Complex nonlinear biodynamics in categories, higher dimensional algebra and Łukasiewicz – Moisil topos: transformations of neuronal, genetic and neoplastic networks. Axiomathes 16(1–2):65–122Google Scholar
  44. Baianu IC, Glazebrook JF, Georgescu G, Brown R (2007a) Non-abelian algebraic topology representations of quantum space–time in a generalized ‘topos’ with a quantum N-valued logic classifier (in submission)Google Scholar
  45. Bak A, Brown R, Minian G, Porter T (2006) Global actions, groupoid atlases and related topics. J Homotopy Related Struct 1:1–54Google Scholar
  46. Bar-Yosef O, Vandermeersch B (1993) (April) Sci Am 94–100Google Scholar
  47. Bartholomay AF (1960) Molecular set theory. A mathematical representation for chemical reaction mechanisms. Bull Math Biophys 22:285–307Google Scholar
  48. Bartholomay AF (1965) Molecular set theory. II. An aspect of biomathematical theory of sets. Bull Math Biophys 27:235–251Google Scholar
  49. Bartholomay A (1971) The wide-sense kinetics of molecular set transformations. Bull Math Biophys 33:355–367Google Scholar
  50. Bateson W (1894) Materials for the study of variation. Cambridge University Press, Cambridge, reprinted in 1992 by John Hopkins Univ PressGoogle Scholar
  51. Beck F, Eccles JC (1992) Quantum aspects of brain activity and the role of consciousness. Proc Natl Acad Sci USA 89:11357–11361Google Scholar
  52. Bendall D (1982) Evolution from molecules to men. Cambridge, UKGoogle Scholar
  53. Bennett M, Hacker P (2003) Philosophical foundations of neuroscience. Blackwell Publishing, LondonGoogle Scholar
  54. Birkhoff G, von Neumann J (1936) The logic of quantum mechanics. Ann Math 37:823–843Google Scholar
  55. Blitz D (1992) Emergent evolution. Kluwer, DordrechtGoogle Scholar
  56. Block N (ed) (1981) Readings in philosophy of psychology, vol 2. Harvard University Press, Cambridge, MassGoogle Scholar
  57. Bogen JE (1995) On the neurophysiology of consciousness. Part 2: Constraining the semantic problem. Conscious Cogn 4:137–158Google Scholar
  58. Bohm D (1990) A new theory of the relationship of mind and matter. Philos Psychol 3:271–286Google Scholar
  59. Borceux F (1994) Handbook of categorical algebra 1 & 2. Encyclopedia of mathematics and its applications 50 & 51. Cambridge University PressGoogle Scholar
  60. Bourbaki N (1961 and 1964) Algèbre commutative. In: Éléments de Mathématique, chapts 1–6. Hermann, ParisGoogle Scholar
  61. Bourbaki N (1960) Elements de Mathmatique. Thorie des ensembles. Hermann, ParisGoogle Scholar
  62. Bourbaki N (1991) General Topology. In: Elements of Mathematics, chapts 1–6, Springer, Berlin, Heidelberg, New York, London, Paris and TokyoGoogle Scholar
  63. Brown R (1967) Groupoids and Van Kampen’s theorem. Proc Lond Math Soc 17(3):385–401Google Scholar
  64. Brown R, Higgins P (1981) The algebra of cubes. J Pure Appl Algebra 21:233–260Google Scholar
  65. Brown R (1987) From groups to groupoids: a brief survey. Bull Lond Math Soc 19:113–134Google Scholar
  66. Brown R (1996) Homotopy theory, and change of base for groupoids and multiple groupoids. Appl Categor Struct 4:175–193Google Scholar
  67. Brown R (2004) Crossed complexes and homotopy groupoids as non commutative tools for higher dimensional local-to-global problems. In: Proceedings of the fields institute workshop on categorical structures for descent and Galois theory, Hopf algebras and semiabelian categories (September 23–28, 2002). Fields Institue Communications 43:101–130Google Scholar
  68. Brown R (2006) Topology and groupoids. BookSurge LLCGoogle Scholar
  69. Brown R, Spencer CB (1976) Double groupoids and crossed modules. Cah Top Géom Diff 17:343–362Google Scholar
  70. Brown R, Hardy JPL (1976) Topological groupoids I: universal constructions. Math Nachr 71:273–286Google Scholar
  71. Brown R, Mucuk O (1995) The monodromy groupoid of a Lie groupoid. Cah Top Géom Diff Cat 36:345–369Google Scholar
  72. Brown R, Mucuk O (1996) Foliations, locally Lie groupoids, and holonomy. Cah Top Géom Diff Cat 37:61–71Google Scholar
  73. Brown R, Janelidze G (1997) Van Kampen theorems for categories of covering morphisms in lextensive categories. J Pure Appl Algebra 119:255–263Google Scholar
  74. Brown R, Porter T (2003) Category theory and higher dimensional algebra: potential descriptive tools in neuroscience. In: Nandini Singh (ed) Proceedings of the international conference on theoretical neurobiology. February 2003, National Brain Research Centre, Delhi, Conference Proceedings 1:80–92Google Scholar
  75. Brown R., İçen İ (2003) Towards a 2-dimensional notion of holonomy. Adv Math 178:141–175Google Scholar
  76. Brown R, Janelidze G (2004) Galois theory and a new homotopy double groupoid of a map of spaces. Appl Categor Struct 12:63–80Google Scholar
  77. Brown R, Porter T (2006) Category theory: an abstract setting for analogy and comparison. In: What is category theory? Advanced studies in mathematics and logic. Polimetrica Publisher, Italy, pp 257–274Google Scholar
  78. Brown R, Danesh-Naruie G, Hardy JPL (1976) Topological groupoids II: covering morphisms and G-spaces. Math Nachr 74:143–156Google Scholar
  79. Brown R, Loday J-L (1987) Van Kampen theorems for diagrams of spaces. Topology 26:311–337.Google Scholar
  80. Brown R, Razak Salleh A (1999) Free crossed resolutions of groups of presentations of modules of identities amomg relations. LMS J Comp Math 2:28–61.Google Scholar
  81. Brown R, Hardie K, Kamps H, Porter T (2002) The homotopy double groupoid of a Hausdorff space. Theor Appl Categ 10:71–93Google Scholar
  82. Brown R, Paton R, Porter T (2004) Categorical language and hierarchical models for cell systems. In: Paton R, Bolouri H, Holcombe M, Parish JH, Tateson R (eds) Computation in cells and tissues – perspectives and tools of thought. Natural Computing Series, Springer Verlag, pp 289–303Google Scholar
  83. Brown R, Glazebrook JF, Baianu IC (2007) A Conceptual construction of complexity levels theory in spacetime categorical ontology: non-abelian algebraic topology, many-valued logics and dynamic systems. Axiomathes 17 (the fourth paper in this issue)Google Scholar
  84. Brown R, Higgins PJ, Sivera R (2007) Non-abelian algebraic topology, in preparation http://www.bangor.ac.uk/mas010/nonab-a-t.html; http://www.bangor.ac.uk/mas010/nonab-t/partI010604.pdf
  85. Buchsbaum DA (1955) Exact categories and duality. Trans Am Math Soc 80:1–34Google Scholar
  86. Bucur I, Deleanu A (1968) Introduction to the theory of categories and functors. John Wiley and Sons, London, New York, SydneyGoogle Scholar
  87. Bunge M, Lack S (2003) Van Kampen theorems for toposes. Adv Math 179:291–317Google Scholar
  88. Butterfield J, Isham CJ (2001) Spacetime and the philosophical challenges of quantum gravity. In: Callender C, Hugget N (eds) Physics meets philosophy at the Planck scale. Cambridge University Press, pp 33–89Google Scholar
  89. Butterfield J, Isham CJ (1998, 1999, 2000–2002) A topos perspective on the Kochen-Specker theorem I–IV. Int J Theor Phys 37(11):2669–2733; 38(3):827–859; 39(6):1413–1436; 41(4):613–639Google Scholar
  90. Cartan H, Eilenberg S (1956) Homological algebra. Princeton University Press, PrincetonGoogle Scholar
  91. Carnap R (1938) The logical syntax of language. Harcourt, Brace and Co, New YorkGoogle Scholar
  92. Čech E (1932) Höherdimensionale homotopiegruppen. Verhandlungen des Internationalen Mathematiker-Kongresses Zurich. Band 2:203Google Scholar
  93. Chalmers DJ (1996) The conscious mind – in search of a fundamental theory. Oxford University PressGoogle Scholar
  94. Chang CC (1960/61) Maximal n-disjointed sets and the axiom of choice. Fund Math 49:11–14.Google Scholar
  95. Changeux J-P (1985) Neuronal man – the biology of mind. Princeton University PressGoogle Scholar
  96. Chevalley C (1946) The Theory of Lie groups. Princeton Univ Press, Princeton, NJGoogle Scholar
  97. Chodos A, Detweiler S (1980) Where has the fifth dimension gone? Phys Rev D 21:2167–2170Google Scholar
  98. Cohen PM (1965) Universal algebra. Harper and Row, New York and LondonGoogle Scholar
  99. Comoroshan S, Baianu IC (1969) Abstract representations of biological systems in organismic supercategories: II. Limits and colimits. Bull Math Biophys 31:84Google Scholar
  100. Connes A (1994) Noncommutative geometry. Academic PressGoogle Scholar
  101. Cordier J-M, Porter T (1989) Shape theory, Ellis Horwood series: mathematics and its applications. Ellis Horwood, Chichester, UKGoogle Scholar
  102. Cramer JG (1980) The transactional interpretation of quantum mechanics. Phys Rev D 22:362Google Scholar
  103. Crick F, Koch C (1990) Toward a neurobiological theory of consciousness. The Neurosciences 2:263–275Google Scholar
  104. Croisot R, Lasier L (1963) Algèbre noethérienne non-commutative. Gauthiers-Villars, ParisGoogle Scholar
  105. Crowell RH (1959) On the van Kampen theorem. Pacific J Math 9:43–50Google Scholar
  106. Csikzentmihalyi M (1990) The evolving self: a psychology for the third millenium. Harper& Row, New YorkGoogle Scholar
  107. Diaconescu R (1976). Grothendieck toposes have Boolean points–a new proof. Comm Algebra 4(8):723–729.Google Scholar
  108. Dalla Chiara M, Giuntini R, Greechie R (2004) Reasoning in quantum theory, trends in logic–studia logica library, vol 22. Kluwer, Dordrecht, Boston, LondonGoogle Scholar
  109. Damasio A (1994) Descartes’ error: emotion, reason and the human brain. Avon Books, New YorkGoogle Scholar
  110. Dawkins R (1982) The extended phenotype. Oxford University Press, OxfordGoogle Scholar
  111. Dennett DC (1981) A cure for the common code? In: Block N (ed) Readings in philosophy of psychology, vol 2. Harvard University Press, Cambridge, Mass, pp 21–37Google Scholar
  112. Dickson SE (1965) Decomposition of modules. Math Z 99:9–13Google Scholar
  113. Dirac PAM (1962) The principles of quantum mechanics. Oxford University Press, OxfordGoogle Scholar
  114. de Jong H, Page M (2000) Qualitative simulation of large and complex genetic regulatory systems. In: Horn W (ed) Proceedings of fourteenth European conference on artifical intelligence, ECAI 2000. IOS Press, Amsterdam, pp 141–145Google Scholar
  115. Dobzhansky T (1973) Genetic diversity and human equality. Basic Books, New YorkGoogle Scholar
  116. Douady A, Douady R (1979) Algebres et théories galoisiennnes, vol 2. CEDIC, ParisGoogle Scholar
  117. Duma A (1965) Sur les catégories des diagrammes. Rev Roum Math Pures et Appl 10:653–657Google Scholar
  118. Dyer E, Eilenberg S (1988) Globalizing fibrations by schedules. Fund Math 130:125–136Google Scholar
  119. Eccles JC (1986) Do mental events cause neural events analogously to the probability fields of quantum mechanics? Proc Royal Soc B277:411–428Google Scholar
  120. Edelman G (1989) The remembered present. Basic Books, New YorkGoogle Scholar
  121. Edelman G (1992) Brilliant air, brilliant fire – on the matter of the mind. Basic Books, New YorkGoogle Scholar
  122. Edelman G, Tononi G (2000) A universe of consiousness. Basic Books, New YorkGoogle Scholar
  123. Ehresmann C (1952) Structures locales et structures infinitésimales. CRAS Paris 274:587–589Google Scholar
  124. Ehresmann C (1959) Catégories topologiques et catégories différentiables. Coll Géom Diff Glob Bruxelles, pp 137–150Google Scholar
  125. Ehresmann C (1963) Catégories doubles des quintettes: applications covariantes. CRAS Paris 256:1891–1894Google Scholar
  126. Ehresmann C (1965) Catégories et structures. Dunod, ParisGoogle Scholar
  127. Ehresmann C (1966) Trends toward unity in mathematics. Cahiers de Topologie et Geometrie Differentielle 8:1–7Google Scholar
  128. Ehresmann C (1984) Oeuvres complètes et commentées: Amiens, 1980–84, edited and commented by Andrée EhresmannGoogle Scholar
  129. Ehresmann AC, Vanbremeersch J-P (1987) Hierarchical evolutive systems: a mathematical model for complex systems. Bull Math Biol 49(1):13–50Google Scholar
  130. Ehresmann AC, Vanbremeersch J-P (2006) The memory evolutive systems as a model of Rosen’s organisms. Axiomathes 16(1–2):13–50Google Scholar
  131. Eilenberg S, Mac Lane S (1942) Natural isomorphisms in group theory. Am Math Soc 43:757–831Google Scholar
  132. Eilenberg S, Mac Lane S (1945) The general theory of natural equivalences. Trans Am Math Soc 58:231–294Google Scholar
  133. Elsasser MW (1981) A form of logic suited for biology. In: Robert R (ed) Progress in theoretical biology, vol 6. Academic Press, New York and London, pp 23–62Google Scholar
  134. Falk D et al (2005) The brain of LB1, Homo floresiensis. Science 308:5719 – 242. DOI: 10.1126/science.1109727
  135. Field HH (1981) Mental representation. In: Block N (ed) Readings in philosophy of psychology, vol 2. Harvard University Press, Cambridge, Mass, pp 64–77Google Scholar
  136. Fleischaker G (1988) Autopoiesis: the status of its system logic. Biosystems 22(1):3749Google Scholar
  137. Fodor JA (1981) Propositional attitudes. In: Block N (ed) Readings in philosophy of psychology, vol 2. Harvard Univ Press, Cambridge, Mass, pp 45–63Google Scholar
  138. Freeman WJ (1997) Nonlinear neurodynamics of intentionality. J Mind Behav 18:143–172Google Scholar
  139. Freeman WJ (1999) Consciousnness, intentionality and causality. J Conscious Stud 11:143–172Google Scholar
  140. Freyd P (1964) Abelian categories. Harper and Row, New York and LondonGoogle Scholar
  141. Gablot R (1971) Sur deux classes de catégories de Grothendieck. Thesis. University de LilleGoogle Scholar
  142. Gabor D (1946) Theory of communication. J IEE (London) 93(III):429–457Google Scholar
  143. Gabriel P (1962) Des catégories abéliennes. Bull Soc Math France 90:323–448Google Scholar
  144. Gabriel P, Popescu N (1964) Caractérisation des catégories abéliennes avec générateurs et limites inductives. CRAS Paris 258:4188–4191Google Scholar
  145. Gabriel P, Zisman M (1967) Category of fractions and homotopy theory, Ergebnesse der math. Springer, BerlinGoogle Scholar
  146. Georgescu G (2006) N-valued logics and Łukasiewicz–Moisil algebras. Axiomathes 16 (1–2):123–136Google Scholar
  147. Georgescu G, Popescu D (1968) On algebraic categories. Revue Roumaine de Mathematiques Pures et Appliquées 13:337–342Google Scholar
  148. Georgescu G, Vraciu C (1970). On the characterization of Łukasiewicz-Moisil algebras. J Algebra 16(4):486–495Google Scholar
  149. Gnoli C, Poli R (2004) Levels of reality and levels of representation. Knowl Organ 21(3):151–160Google Scholar
  150. Godement R (1958) Théorie des faisceaux. Hermann, ParisGoogle Scholar
  151. Goldie AW (1967) Localization in non-commutative noetherian rings. J Algebra 5:89–105Google Scholar
  152. Goldblatt R (1979) Topoi. The categorial analysis of logic. North-Holland Publ Comp, AmsterdamGoogle Scholar
  153. Golubitsky M, Stewart I (2006) Nonlinear dynamics of networks: the groupoid formalism. Bull Am Math Soc 43(3):305–364Google Scholar
  154. Goodwin BC (1982) Development and evolution. J Theor Biol 97:43–55Google Scholar
  155. Goodwin BC (1994) How the leopard changed its spots: the evolution of complexity. Touchstone Publ, New YorkGoogle Scholar
  156. Grothendieck A (2007) Pursuing stacks. In: Maltsiniotis G (ed) Documents Mathe´matiques, Socie´te´ Mathe´matique de France (to appear).Google Scholar
  157. Goubault E (2003) Some geometric perspectives in concurrency theory. Homol Homotopy Appl 5(2):95–136Google Scholar
  158. Gould SJ (1977a) Ever since Darwin. New York and HammondsworthGoogle Scholar
  159. Gould SJ (1977b) Ontogeny and phylogeny. Belknap Press, Cambridge, MassGoogle Scholar
  160. Gravina B et al (2005) Nature 438:51–56Google Scholar
  161. Gray CW (1965) Sheaves with values in a category. Topology 3:1–18Google Scholar
  162. Gregory RL (ed)-assist, Zangwill OL (1987) The Oxford companion to the mind. Oxford University Press, Oxford and New YorkGoogle Scholar
  163. Grossberg S (1999) The link between brain learning, attention and consciousness. Conscious Cogn 8:1–44Google Scholar
  164. Grothendieck A (1957) Sur quelque point d-algébre homologique. Tohoku Math J 9:119–121Google Scholar
  165. Grothendieck A (1971) Revêtements étales et Groupe Fondamental (SGA1), chap VI: Catégories fibrées et descente. Lecture Notes in Math 224, Springer-Verlag, BerlinGoogle Scholar
  166. Grothendieck A, Dieudonné J (1960) Eléments de geometrie algébrique. Publ Inst des Hautes Etudes de Science 4Google Scholar
  167. Harman GH (1981) Language learning. In: Block N (ed) Readings in philosophy of psychology, vol 2. Harvard Univ Press, Cambridge, Mass, pp 38–44Google Scholar
  168. Hartmann N (1935) Zur Grundlegung der Ontologie. W de Gruyter, BerlinGoogle Scholar
  169. Hartmann N (1952) The new ways of ontology. ChicagoGoogle Scholar
  170. Hawking SW, Ellis GFR (1973) The large scale structure of space–time. Cambridge University Press, Cambridge, UKGoogle Scholar
  171. Healy MJ, Caudell TP (2004) Neural networks, knowledge and cognition: a mathematical semantic model based upon category theory. Techninal report EECE-TR-04-20, Dept. of Electrical and Computer Engineering, University of New MexicoGoogle Scholar
  172. Healy MJ, Caudell TP (2006) Ontologies and worlds in category theory: implications for neural systems. Axiomathes 16(1–2):165–214Google Scholar
  173. Hebb DO (1949) The organization of behavior. Wiley, New YorkGoogle Scholar
  174. Heller A (1958) Homological algebra in Abelian categories. Ann Math 68:484–525Google Scholar
  175. Heller A, Rowe KA (1962) On the category of sheaves. Am J Math 84:205–216Google Scholar
  176. Higgins PJ (1964) Presentations of groupoids, with applications to groups. Proc Cambridge Philos Soc 60:7–20Google Scholar
  177. Higgins PJ (2005) Categories and groupoids. Van Nostrand Mathematical Studies: 32 (1971); Reprints in Theory and Applications of Categories 7:1–195Google Scholar
  178. Higgins PJ, Mackenzie KCH (1990) Fibrations and quotients of differentiable groupoids. J London Math Soc 42(1):101–110Google Scholar
  179. Hiley B, Pylkkänen P (2005) Can mind affect matter via active information? Mind Matter 3(2):7–27Google Scholar
  180. Hills D (1981) Mental representations and languages of thought. In: Block N (ed) Readings in philosophy of psychology, vol 2. Harvard University Press, Cambridge, Mass, pp 11–20Google Scholar
  181. Hofstadter DR (1979) Gödel, Escher, Bach: an eternal Golden Braid. Basic Books, New YorkGoogle Scholar
  182. Huber PI (1962) Standard constructions in Abelian categories. Can J Math Math Ann 145:321–325Google Scholar
  183. Hurewicz E (1955) On the concept of fiber spaces. Proc Natl Acad Sci USA 41:956–961Google Scholar
  184. James W (1890) The principles of psychology. Henry Hold and Co., New YorkGoogle Scholar
  185. James W (1958) Talks to teachers on psychology. Norton, New YorkGoogle Scholar
  186. Jerne NK (1974) Towards a network theory of the immune system. Ann Imunol (Inst Pasteur) 125C:373–389Google Scholar
  187. van Kampen EH (1933) On the connection between the fundamental groups of some related spaces. Am J Math 55:261–267Google Scholar
  188. Kan DM (1958) Adjoint functors. Trans Amer Math Soc 294:294–329.Google Scholar
  189. Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626[1]Google Scholar
  190. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeGoogle Scholar
  191. Kleisli H (1962) Homotopy theory in Abelian categories. Can J Math 14:139–169Google Scholar
  192. Knight JT (1970) On epimorphisms of non-commutative rings. Proc Cambridge Phil Soc 68:589–601Google Scholar
  193. Kosslyn SM (2007) On the evolution of human motivation: the role of social prosthetic systems. In: Platek et al (eds) Evolutionary cognitive neuroscience. MIT Press, Cambridge, MAGoogle Scholar
  194. Kozma R, Puljic M, Balister P, Bollobas B, Freeman WJ (2004) Neuropercolation a random cellular automata approach to spatio–temporal neurodynamics. Lect Notes Comput Sci 3305:435–443Google Scholar
  195. Krips H (1999) Measurement in quantum theory. In: Zalta EN (ed) The Stanford Encyclopedia of Philosophy (Winter 1999 Edition)Google Scholar
  196. Landsman NP (1998) Mathematical topics between classical and quantum mechanics. Springer Verlag, New YorkGoogle Scholar
  197. Lawvere FW (1963) Functorial semantics of algebraic theories. Proc Natl Acad Sci USA Mathematics 50:869–872Google Scholar
  198. Lawvere FW (1966) The category of categories as a foundation for mathematics. In: Eilenberg S et al (eds) Proc Conf Categorical Algebra- La Jolla. Springer-Verlag, Berlin, Heidelberg and New York, pp 1–20Google Scholar
  199. Lawvere FW (1969) Closed cartesian categories. Lecture held as a guest of the Romanian Academy of Sciences, BucharestGoogle Scholar
  200. Levich AP, Solovy’ov AV (1999) Category-functor modelling of natural systems. Cybernet Syst 30(6):571–585Google Scholar
  201. Li M, Vitanyi P (1997) An introduction to Kolmogorov complexity and its applications. Springer Verlag, New YorkGoogle Scholar
  202. Löfgren L (1968) An axiomatic explanation of complete self-reproduction. Bull Math Biophys 30:317–348Google Scholar
  203. Lubkin S (1960) Imbedding of abelian categories. Trans Am Math Soc 97:410–417Google Scholar
  204. Luisi PL, Varela FJ (1988) Self-replicating micelles a chemical version of a minimal autopoietic system. Origin Life Evol Biospheres 19(6):633–643Google Scholar
  205. Luhmann N (1995) Social Systems. Stanford University Press, StanfordGoogle Scholar
  206. Mac Lane S (1963) Homology. Springer, BerlinGoogle Scholar
  207. Mac Lane S (2000) Categories for the working mathematician. Springer, New York, Berlin, HeidelbergGoogle Scholar
  208. Mac Lane S, Moerdijk I (1992) Sheaves in geometry and logic. A first introduction in topos theory. Springer-Verlag, New YorkGoogle Scholar
  209. Majid S (1995) Foundations of quantum group theory. Cambridge University Press, Cambridge, UKGoogle Scholar
  210. Majid S (2002) A quantum groups primer. Cambridge University Press, Cambridge, UKGoogle Scholar
  211. Mallios A, Raptis I (2003) Finitary, causal and quantal vacuum Einstein gravity. Int J Theor Phys 42:1479Google Scholar
  212. Manders KL (1982) On the space-time ontology of physical theories. Philos Sci 49(4):575–590Google Scholar
  213. Martins JF, Porter T (2004) On Yetter’s invariant and an extension of the Dijkgraaf-witten invariant to categorical groups. math.QA/0608484Google Scholar
  214. Maturana HR, Varela FJ (1980) Autopoiesis and Cognition – the realization of the living. Boston Studies in the Philosophy of Science, vol 42. Reidel Pub Co., DordrechtGoogle Scholar
  215. May JP (1999) A concise course in algebraic topology. The University of Chicago Press, ChicagoGoogle Scholar
  216. Mayr E (1970) Populations, species, and evolution. Harvard University Press, Cambridge, MAGoogle Scholar
  217. Mayr E, Provine WB (eds) (1986) The evolutionary synthesis: perspectives on the unification of biology. Cambridge, MAGoogle Scholar
  218. McCrone J (1991) The ape that spoke. MacMillan, New YorkGoogle Scholar
  219. McCulloch W, Pitts W (1943) A logical calculus of ideas immanent in nervous activity. Bull Math Biophys 5:115–133Google Scholar
  220. McGinn C (1995) Consciousness and space. In: Metzinger T (ed) Conscious experience. Imprint Academic, ThorvertonGoogle Scholar
  221. McKenna MC, Bell SK (1997) Classification of mammals above the species level. Columbia University Press, New YorkGoogle Scholar
  222. Mead GH (1990) The mechanisms of social consciousness. In: Pickering J, Skinner M (eds) From sentience to symbols, chap 7. University of Toronto Press, Toronto and Buffalo, pp 190–216Google Scholar
  223. Misra B, Prigogine I, Courbage M (1979) Lyaponouv variables: entropy and measurement in quantum mechanics. Proc Natl Acad Sci USA 78(10):4768–4772Google Scholar
  224. Mitchell B (1964) The full imbedding theorem. Am J Math 86:619–637Google Scholar
  225. Mitchell B (1965) Theory of categories. Academic Press, LondonGoogle Scholar
  226. Mumford L (1979) The myth of the machine—technics and human evelopment. Harcourt, Brace & World, New York, pp 3–342.Google Scholar
  227. Nagy E, Molnar P (2004) Homo imitans or homo provocans? The phenomenon of neonatal initiation. Infant Behav Dev 27:57–63Google Scholar
  228. Oberst U (1969) Duality theory for Grothendieck categories. Bull Am Math Soc 75:1401–1408Google Scholar
  229. Ooort F (1970) On the definition of an abelian category. Proc Roy Neth Acad Sci 70:13-02Google Scholar
  230. Ore O (1931) Linear equations in non-commutative fields. Ann Math 32:463–477Google Scholar
  231. Penrose R (1994) Shadows of the mind. Oxford University Press, OxfordGoogle Scholar
  232. Penrose R, Sir (2007) The road to reality—a complete guide to the laws of the universe. Vintage Books, New York, pp 7–1099.Google Scholar
  233. Pfeiffer E (1969) The emergence of man. Cambridge University Press, Cambridge, UKGoogle Scholar
  234. Pickering J, Skinner M (1990) From sentience to symbols. University of Toronto Press, TorontoGoogle Scholar
  235. Plymen RJ, Robinson PL (1994) Spinors in Hilbert Space. Cambridge Tracts in Math. 114, Cambridge Univ. Press, CambridgeGoogle Scholar
  236. Poli R (1998) Levels. Axiomathes 9(1–2):197–211Google Scholar
  237. Poli R (2001a) The basic problem of the theory of levels of reality. Axiomathes 12(3–4):261–283Google Scholar
  238. Poli R (2001b) Alwis ontology for knowledge engineers. PhD Thesis, Utrecht UniversityGoogle Scholar
  239. Poli R (2006a) Levels of reality and the psychological stratum. Revue Internationale de Philosophie 61:2, 163–180Google Scholar
  240. Poli R (2006b) Steps towards a synthetic methodology. In: Proceediongs of the conference continuity and change: perspectives on science and religion. Metanexus Institute, June 2006, Philadelphia, PA. http://www.metanexus.net/conferences/pdf/conference2006/Poli.pdf
  241. Poli R (2006c) First steps in experimental phenomenology. In: Loula A, Gudwin R (eds) Artificial cognition systemsGoogle Scholar
  242. Poli R (2008) Ontology: the categorical stance. In: Poli R et al (eds) Theory and applications of ontology. Springer, Berlin (in press)Google Scholar
  243. Pollard JW (ed) (1984) Evolutionary theory: paths into the future. ChichesterGoogle Scholar
  244. Popescu N (1973) Abelian categories with applications to rings and modules. Academic Press, New York and London. 2nd edn 1975 (English translation by I.C. Baianu)Google Scholar
  245. Popescu N (1966, 1967) Elements of sheaf theory. St Cerc Mat V/VI, 18–19:205–240; 945–991Google Scholar
  246. Popescu N (1967) La théorie générale de la décomposition. Rev Roum Math Pures et Appl 7:1365–1371Google Scholar
  247. Porter T (2002) Geometric aspects of multiagent sytems. preprint University of Wales-BangorGoogle Scholar
  248. Pradines J (1966) Théorie de Lie pour les groupoides différentiable, relation entre propriétes locales et globales. CR Acad Sci Paris Sér A 268:907–910Google Scholar
  249. Pribram KH (1991) Brain and perception: holonomy and structure in figural processing. Lawrence Erlbaum Assoc., HillsdaleGoogle Scholar
  250. Pribram KH (2000) Proposal for a quantum physical basis for selective learning. In: Farre (ed) Proceedings ECHO IV 1–4Google Scholar
  251. Prigogine I (1980) From being to becoming – time and complexity in the physical sciences. W. H. Freeman and Co, San FranciscoGoogle Scholar
  252. Raptis I (2003) Algebraic quantisation of causal sets. Int J Theor Phys 39:1233Google Scholar
  253. Raptis I, Zapatrin RR (2000) Quantisation of discretized spacetimes and the correspondence principle. Int J Theor Phys 39:1Google Scholar
  254. Rashevsky N (1954) Topology and life: in search of general mathematical principles in biology and sociology. Bull Math Biophys 16:317–348Google Scholar
  255. Rashevsky N (1965) The representation of organisms in terms of predicates. Bull Math Biophys 27:477–491Google Scholar
  256. Rashevsky N (1967) Organisms sets and biological epimorphism. Bull Math Biophys 29:389–393Google Scholar
  257. Rashevsky N (1968) Neurocybernetics as a particular case of general regulatory mechanisms in biological and social organisms. Concepts de l’Age de la Science 3:243–248Google Scholar
  258. Rashevsky N (1969) Outline of a unified approach to physics, biology and sociology. Bull Math Biophys 31:159–198Google Scholar
  259. Riley JA (1962) Axiomatic primary and tertiary decomposition theory. Trans Am Math Soc 105:177–201Google Scholar
  260. Roos JE (1964) Sur la condition Ab6 et ses variantes dans les catégories abéliennes. CRAS Paris 258.Google Scholar
  261. Roos (1967) Sur la condition Ab6 et ses variantes dans les cate’gories abe’liennes, CRAS, Serie A, Paris 264:991–994.Google Scholar
  262. Roux A (1964) Sur une équivalence de catégories abéliennes. CRAS Paris 258:5566–5569Google Scholar
  263. Roberts JE (2004) More lectures on algebraic quantum field theory. In: Connes A et al (eds) Noncommutative geometry. Springer, Berlin, New YorkGoogle Scholar
  264. Rosen R (1958a) A relational theory of biological systems. Bull Math Biophys 20:245–260Google Scholar
  265. Rosen R (1958b) The representation of biological systems from the standpoint of the theory of categories. Bull Math Biophys 20:317–341Google Scholar
  266. Rosen R (1971) Dynamic realizations of (M,R)—systems. Bull Math Biophys 34:1–15.Google Scholar
  267. Rosen (1971a) Dynamic realizations of (M,R)—systems. Bull Math Biophys 33:1–23.Google Scholar
  268. Rosen R (1971b) Dynamic realizations of (M,R)—systems. Bull Math Biophys 33:230–245.Google Scholar
  269. Rosen R (1977) Observation and biological systems. Bull Math Biol 39:663–678.Google Scholar
  270. Rosen R (1985) Anticipatory systems. Pergamon Press, New YorkGoogle Scholar
  271. Rosen R (1987) On complex systems. Eur J Operation Res 30:129–134Google Scholar
  272. Rovelli C (1998) Loop quantum gravity. In: Dadhich N et al (eds) Living reviews in relativity (refereed electronic journal) http://www.livingreviews.org/Articles/Volume1/1998~1 rovelli
  273. Rosen R (1999) Essays on life itself, Columbia University Press, New York.Google Scholar
  274. Russell B, Whitehead AN (1925) Principia mathematica. Cambridge University Press, CambridgeGoogle Scholar
  275. Ryle G (1949) The concept of mind. Hutchinson, LondonGoogle Scholar
  276. Samuel P, Zariski O (1957, 1960) Commutative algebra, vols 1 and 2. van Nostrand, New YorkGoogle Scholar
  277. Schrödinger E (1945) What is life? Cambridge University Press, Cambridge, UKGoogle Scholar
  278. Schrödinger E (1967) Mind and matter in ‘what is life?’ Cambridge University Press, Cambridge, UKGoogle Scholar
  279. Stenström B (1968) Direct sum decompositions in Grothendieck categories. Arkiv Math 7:427–432. Google Scholar
  280. Searle JR (1983) Intentionality. Cambridge University Press, Cambridge, UKGoogle Scholar
  281. Serre D et al (2004) No evidence of Neanderthal mtDNA contribution to early modern humans. PLoS Biol 2(3):3137. PMID 15024415Google Scholar
  282. Silver L (1967) Non-commutative localization and applications. J Algebra 7:44–76Google Scholar
  283. Sober E (ed) (1984) Conceptual issues in evolutionary biology and anthology. Cambridge, MassachusettsGoogle Scholar
  284. Sorkin RD (1991) Finitary substitute for continuous topology. Int J Theor Phys 30(7):923–947Google Scholar
  285. Smolin L (2001) Three roads to quantum gravity. Basic Books, New YorkGoogle Scholar
  286. Spanier EH (1966) Algebraic topology. McGraw Hill, New YorkGoogle Scholar
  287. Sperry RW (1992) Turnabout on consciousness: a mentalist view. J Mind Behav 13:259–280Google Scholar
  288. Stapp H (1993) Mind, matter and quantum mechanics. Springer Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  289. Stewart I, Golubitsky M (1993) Fearful symmetry: is god a geometer? Blackwell, Oxford, UKGoogle Scholar
  290. Stenström B (1968) Direct sum decomposition in Grothendieck categories. Arkiv Math 7:427–432Google Scholar
  291. Szabo RJ (2003) Quantum field theory on non-commutative spaces. Phys Rep 378:207–209Google Scholar
  292. Takahashi H (1963) Adjoint pair of functors on abelian categories. J Fac Soc University Tokyo 13:175–181Google Scholar
  293. Tattersall I, Schwartz J (2000) Extinct humans. Westview Press, Boulder, Colorado Oxford. ISBN 0-8133-3482-9 (hc)Google Scholar
  294. Thom R (1980) Modèles mathématiques de la morphogénèse, Paris, BourgeoisGoogle Scholar
  295. Thompson W D’Arcy (1994) On growth and form. Dover Publications Inc., New YorkGoogle Scholar
  296. Turing AM (1952) The chemical basis of morphogenesis. Phil Trans Royal Soc (B) 257:37–72Google Scholar
  297. Unruh WG (2001) Black holes, dumb holes, and entropy. In: Callender C, Hugget N (eds) Physics meets philosophy at the planck scale. Cambridge University Press, pp 152–173Google Scholar
  298. Varela FJ (1979) Principles of biological autonomy. Elsevier/North-Holland, New YorkGoogle Scholar
  299. Várilly JC (1997) An introduction to noncommutative geometry arXiv:physics/9709045Google Scholar
  300. Velmans M (2000) Understanding consciousness. London, RoutledgeGoogle Scholar
  301. von Neumann J (1932) Mathematische Grundlagen der Quantenmechanik. Springer, BerlinGoogle Scholar
  302. Wallace R (2005) Consciousness: a mathematical treatment of the global neuronal workspace. Springer, BerlinGoogle Scholar
  303. Wallace R (2007) Culture and inattentional blindness: a global workspace perspective. J Theor Biol 245:378–390Google Scholar
  304. Warner M (1982) Representations of (M,R)-systems by categories of automata. Bull Math Biol 44:661–668Google Scholar
  305. Weinstein A (1996) Groupoids: unifying internal and external symmetry. Notices Am Math Soc 43:744–752Google Scholar
  306. Wess J, Bagger J (1983) Supersymmetry and supergravity. Princeton University Press, Princeton, NJGoogle Scholar
  307. Weinberg S (1995, 2000) The quantum theory of fields I & II. Cambridge University Press; vol. III published in 2000Google Scholar
  308. Wheeler J, Zurek W (1983) Quantum theory and measurement. Princeton University Press, Princeton, NJGoogle Scholar
  309. Whitehead JHC (1941) On adding relations to homotopy groups. Ann Math 42(2):409–428Google Scholar
  310. Wiener N (1950) The human use of human beings: cybernetics and society. Free Association Books, London, 1989 ednGoogle Scholar
  311. Wilson DL (1999) Mind-brain interaction and violation of physical laws. J Conscious Stud 6(8–9):185–200Google Scholar
  312. Winograd T (1972) Understanding natural language. Academic Press, New YorkGoogle Scholar
  313. Woit P (2006) Not even wrong: the failure of string theory and the search for unity in physical laws. Jonathan CapeGoogle Scholar
  314. Wütrich K (1986) NMR of proteins and nucleic acids. John Wiley Sons, New York, Chichester, Brisbane, Toronto, SingaporeGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.FSHN and NPRE Departments, AFC–NMR and NIR Microspectroscopy FacilityUniversity of Illinois at Urbana–ChampaignUrbanaUSA
  2. 2.School of InformaticsUniversity of WalesBangor, GwyneddUK
  3. 3.Department of Mathematics and Computer ScienceEastern Illinois UniversityCharlestonUSA

Personalised recommendations