Advertisement

Axiomathes

, Volume 16, Issue 1–2, pp 155–163 | Cite as

A Computational Model of Oncogenesis using the Systemic Approach

  • Sorinel A. Oprisan
  • Ana Oprisan
Article

Abstract

A new theoretical model of oncogenesis that incorporates a systemic view of biodynamics was developed and analyzed. According to our model, the emergent behavior at the cell population level is the result of nonlinear interactions between the neoplastic and immune subsystems. Our approach allows subsequent extensions of the model to span multiple levels of biological organization. The model opens the possibility of a flexible connection between the molecular and tissue level descriptions of oncogenesis.

Keywords

biological principles cellular automata fractal spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, J. A., Maggelakis, S. A. 1990‘Diffusion Regulated Growth Characteristics of a Spherical Prevascular Carcinoma’Bulletin of Mathematical Biology52549582CrossRefGoogle Scholar
  2. Armitage, J. O., Antman, K. I. 1992High-Dose Cancer TherapyWilliams & WilikinsBaltimoreGoogle Scholar
  3. Baianu, I. C., Marinescu, M. 1968‘Organismic Supercategories: Towards a Unified Theory of Systems’Bulletin of Mathematical Biophysics30148165Google Scholar
  4. Baianu, I. C. 1971‘Organismic Supercategories and Qualitative Dynamics of Systems’Bulletin of Mathematical Biophysics33339353Google Scholar
  5. Baianu, I. C., Scripcariu, D. 1974‘On Adjoint Dynamical Systems’Bulletin of Mathematical Biology36356364Google Scholar
  6. Baianu, I. C. 1980‘Natural Transformations of Organismic Structures’Bulletin of Mathematical Biology42431446Google Scholar
  7. Baianu, I. C. 1987‘Computer Models and Automata Theory in Biology and Medicine’Witten, M. eds. Mathematical Models in MedicinePergamon PressNew York15131577CERN Preprint No. EXT-2004-072. http://doc.cern.ch//archive/electronic/other/ext/ext-2004-072.pdfGoogle Scholar
  8. Bignold, L. P. 2003‘Initiation of Genetic Instability and Tumour Formation: A Review and Hypothesis of a Nongenotoxic Mechanism’Cell Molecular Life Science6011071117Google Scholar
  9. Bos, R., Zhong, H., Hanrahan, C. F., Mommers, E. C., Semenza, G. L., Pinedo, H. M., Abeloff, M. D., Simons, J. W., Diest, P. J., Wall, E. 2001‘Levels of Hypoxia-Inducible Factor-1 Alpha during Breast Carcinogenesis’Journal of National Cancer Institute93309314Google Scholar
  10. Bursh, W., Putz, B., Barthel, G., Schult-Hermann, R. 1990‘Determination of the Length of the Histological Stages of Apoptosis in Normal Liver and in Altered Hepatic Foci of Rats’Carcinogenesis11847854Google Scholar
  11. Cairns, J. 1987Cancer: Science and SocietyW.H. FreemanSan Francisco, CAGoogle Scholar
  12. Campisi, J. 2003‘Cancer and Ageing: Rival Demons?’Nature Review Cancer3339349Google Scholar
  13. Chu, E. H., Trosko, J. E., Chang, C. C. 1977‘Mutational Approaches to the Study of Carcinogenesis’Journal of Toxicology and Environmental Health213171334Google Scholar
  14. DePinho, R. A. 2000‘The Age of Cancer’Nature408248254CrossRefGoogle Scholar
  15. Düchting, W. 1990‘Tumor Growth Simulation’Computer Graphics14505508Google Scholar
  16. Düchting, W., Ulmer, W., Ginsberg, T. 1996‘Cancer: A Challenge for Control Theory and Computer Modelling’European Journal of Cancer32A12831292Google Scholar
  17. Eisen, M. 1979Mathematical Models in Cell Biology and Cancer ChemotherapySpringer-VerlagBerlinGoogle Scholar
  18. Fabarius, A., Willer, A., Yerganian, G., Hehhnann, R., Duesberg, P. 2002‘Specific Aneusomies in Chinese Hamster Cells at different Stages of Neoplastic Transformation, Initiated by Nitrosorethylurea’Proceedings of the National Academy of Science USA9967786783CrossRefGoogle Scholar
  19. Gazit, Y., Baish, J. W., Safabakhsh, N., Leunig, M., Baxter, L. T., Jain, R. K. 1997‘Fractal Characteristics of Tumor Vascular Architecture during Tumor Growth and Regression’Microcirculation4395402Google Scholar
  20. Gold, L. S., Slone, T. H., Stern, B. R., Bernstein, L. 1993‘Comparison of Target Organs of Carcinogenicity for Mutagenic and Non-Mutagenic Chemicals’Mutation Research28675100Google Scholar
  21. Hahn, W. C., Weinberg, R. A. 2000a‘Modelling the Molecular Circuitry of Cancer’Nature Review Cancer2331341Google Scholar
  22. Hahn, W. C., Weinberg, R. A. 2000b‘The Hallmarks of Cancer’Cell1005770Google Scholar
  23. Hahn, W. C., Weinberg, R. A. 2002‘Rules for Making Human Tumor Cells’New England Journal of Medicine34715931603CrossRefGoogle Scholar
  24. Herberman, R. B., Vujanovic, N., Rabinowich, H., WhitSide, T. L. 1993Natural Killer Cells and Interlukin-2- Activated Killer CellsMertelsmann, R. eds. Lymphohaemotopoietic Growth Factors in Cancer Therapy IISpringer-VerlagBerlin1127Google Scholar
  25. Haroon, Z. A., K. G. Peters, C. S. Greenberg and M. W. Dewhirst: Angiogenesis and oxygen transport in solid tumors, in ‘Antiangiogenic agents in cancer therapy’, B.A. Teicher (ed), Totowa: Humana Press, pp. 3–21Google Scholar
  26. Jain, R. K. 1987‘Transport of Molecules Across Tumor Vasculature’Cancer Metastasis Review6559594Google Scholar
  27. Jain, R. K. 1990‘Physiological Barriers to Delivery of Monoclonal Antibodies and Other Macromolecules in Tumors’Cancer Research (Suppl.)50814s819sGoogle Scholar
  28. Jain, R. K. 2001‘Delivery of Molecular Medicine to Solid Tumors: Lessons from in vivo Imaging of Gene Expression and Function’Journal of Controlled Release74725CrossRefGoogle Scholar
  29. Janeway, C. A. 1989‘A Primitive Immune System’Nature6238108110Google Scholar
  30. Karre, K., Hanson, M., Kiesling, R. 1991‘Multiple Interactions at the Natural Killer Workshop’Immunology Today12343345CrossRefGoogle Scholar
  31. Kimber, I, Moore, M. 1985‘Mechanism and Regulation of Natural Cytotoxicity’Exp. Cell. Biol.536984Google Scholar
  32. Kimmel, M., Axelrod, D. E. 1991‘Unequal Cell Division, Growth Regulation and Colony Size of Mammalian Cells: A ‘Mathematical Model and Analysis of Experimental Data’Journal of Theoretical Biology153157180Google Scholar
  33. Klein, C. B., Costa, M. 1997‘DNA Methylation, Heterochromatin and Epigenetic Carcinogens’Mutation Research386163180Google Scholar
  34. Kuznetsov, V.: 1991, ‘Biophysical Aspects of Cellular Interaction of Natural Killer Cells (NK) and Mathematical Modeling of the Cytotoxical Reaction’, in Mathematics Applied to Biology and Medicine (January 7–11, 1991, Grenobel), pp. 298–299Google Scholar
  35. Kuznetsov, V. 1992‘The NK-Cell Recognition of Target-Cells without Specific NK-Receptor. A Biophysical Model’Immunologiya3813Google Scholar
  36. Kuznetsov, V. 1996‘Harpoon Model for Cell–Cell Adhesion and Recognition of Target Cells by the Natural Killer Cells’Journal of Theoretical Biology180321342CrossRefGoogle Scholar
  37. Lefever, R., J. Hiernaux and P. Meyers: 1989, ‘Evolution of Tumor Attacked by Immune Cytotoxic Cells: The Immune Response Dilemma’, in Cell to Cell Signaling: Rom Experiments to Theoretical Models, Academic Press, pp. 315–333Google Scholar
  38. Marsh, D., Zori, R. 2002‘Genetic Insights into Familial Cancers update and Recent Discoveries’Cancer Letters181125164Google Scholar
  39. Moretta, A., Vitale, M., Sivori, S., Bottino, C., Morelli, L., Angagliaro, R. 1994‘Human Natural Killer Cell Receptors for HLA-class I Molecules. Evidence that the Kp43(CD94) Molecule Functions as Receptors for HLA-B Alleles’Journal of Experimental Medicine180454555CrossRefGoogle Scholar
  40. Oprisan, S. A. 1998a‘Convergence Properties of the Functional Self-Organization Stochastic Algorithm’Journal of Physics A: Mathematical and General3184518463CrossRefGoogle Scholar
  41. Oprisan, S. A., Tarus, B., Frangopol, P. T. 1998b‘The Mesoscopic Approach to Chemical Mechanism of Tumor Growth (III)’Roumanian Journal of Physics43595601Google Scholar
  42. Oprisan, S. A., Ardelean, A., Frangopol, P. T. 2000‘Self Organization and Competition in the Immune Response to Cancer Invasion. A Phase-Orientated Computational Model of Oncogenesis’Bioinformatics1696100Google Scholar
  43. Qi, A. S., Zheng, X., Du, C. Y., An, B. S. 1993‘A Cellular Automata Model for Cancerous Growth’Journal of Theoretical Biology161112CrossRefGoogle Scholar
  44. Perez, C. A., Brady, L. W. 1989Principles of Radiation OncologyJ.B. Lippincott CompanyPhiladelphiaGoogle Scholar
  45. Renan, M. J. 1993‘How Many Mutations are Required for Tumorigenesis? Implications from Human Cancer Data’Molecular Carcinogenesis7139146Google Scholar
  46. Rosen, R. 1958a‘A Relational Theory of Biological Systems’Bulletin of Mathematical Biophysics20245260Google Scholar
  47. Rosen, R. 1958b‘The Representation of Biological Systems from the Standpoint of the Theory of Categories’Bulletin of Mathematical Biophysics20317341Google Scholar
  48. Rosen, R. 1968a‘On Analogous Systems’Bulletin of Mathematical Biophysics30481492Google Scholar
  49. Rosen, R. 1968b‘Recent Developments in the Theory of Control and Regulation of Cellular Processes’International Review of Cytology232588Google Scholar
  50. Rosen, R. 1971‘Some Realizations of (M,R)-Systems and Their Interpretation’Bulletin of Mathematical Biophysics33303319Google Scholar
  51. Rosen, R. 1973‘On the Dynamical Realization of (M,R)-Systems’Bulletin of Mathematical Biology3519CrossRefGoogle Scholar
  52. Rubin, H. 1990‘The Significance of Biological Heterogeneity’Cancer Metastasis Review9120Google Scholar
  53. Rubin, H. 1999‘’Cell Damage, Aging and Transformation: A Multilevel Analysis of Carcinogenesis’Anticancer Research1948774886Google Scholar
  54. Rubin, H. 2001‘The Role of Selection in Progressive Neoplastic transformation’Advance Cancer Research83159207Google Scholar
  55. Schulte-Hermann, R., W. Parzefall, W. Bursch, and J. Timmermann-Troisiener: 1998, ‘Hepatocarcinogenesis by Non-Genotoxic Compounds’, in Biologically Based Methods for Cancer Risk Assessment. NATO Series A: Life Sciences, Vol. 159, Plenum Press, New York, pp. 155–163Google Scholar
  56. Sherratr, J. A., Nowak, M. A. 1992‘Oncogenesis, Anti-Oncogenes and the Immune Response to Cancer: A Mathematical Model’Proceedings of the Royal Society of London B248261271Google Scholar
  57. Smolle, J., Grimstad, I. A. 1992‘Tumor-Cell Motility and Invasion within Tumor determined by Applying Computer Simulation to Histologic Patterns’International Journal of Cancer50331335Google Scholar
  58. Smolle, J., Stettner, H. 1993‘Computer Simulation of Tumor Cell Invasion by Stochastic Growth Model’Journal of Theoretical Biology1606372CrossRefGoogle Scholar
  59. Swan, G. M. 1981Optimization of Human Cancer RadiotherapySpringer-VerlagBerlinGoogle Scholar
  60. Thames, H. D., Hendry, J. H. 1987Fractionation in RadiotherapyTaylor & FrancisLondonGoogle Scholar
  61. Vitoio, D., Vujanovic, N. L., Rabinowich, H., Schleisinger, M., Herberman, R. B., Whitside, T. L. 1993‘Rapid Il-2-Induced Adherence of Human Natural Killer Cells. Expression of mRNA for Cytokines and Il-2 Receptors in Adherent NK Cells’Journal of Immunology15119261937Google Scholar
  62. Vogelstein, B., Kinzler, K. W. 1993‘The Multistep Nature of Cancer’Trends in Genetics9138141CrossRefGoogle Scholar
  63. Zeiger, E. 2001‘Mutagens that are Not Carcinogens: Faulty Theory or Faulty Tests?’Mutation Research4922938Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Sorinel A. Oprisan
  • Ana Oprisan

There are no affiliations available

Personalised recommendations