, Volume 16, Issue 1–2, pp 123–136 | Cite as

N-Valued Logics and Łukasiewicz–Moisil Algebras

  • George Georgescu


Fundamental properties of N-valued logics are compared and eleven theorems are presented for their Logic Algebras, including Łukasiewicz–Moisil Logic Algebras represented in terms of categories and functors. For example, the Fundamental Logic Adjunction Theorem allows one to transfer certain universal, or global, properties of the Category of Boolean Algebras, , (which are well-understood) to the more general category \({\cal L}\)M n of Łukasiewicz–Moisil Algebras. Furthermore, the relationships of LM n -algebras to other many-valued logical structures, such as the n-valued Post, MV and Heyting logic algebras, are investigated and several pertinent theorems are derived. Applications of Łukasiewicz–Moisil Algebras to biological problems, such as nonlinear dynamics of genetic networks – that were previously reported – are also briefly noted here, and finally, probabilities are precisely defined over LM n -algebras with an eye to immediate, possible applications in biostatistics.


categories N-valued logics and Łukasiewicz–Moisil logic algebras categories of Łukasiewicz–Moisil algebras the fundamental logic adjunction theorem equivalences between pairs of different categories of n-valued logic algebras colimits limits and adjointness relations in biology category of boolean algebras Post MV and Heyting logic algebras universal or global properties of categories of logic algebras full and faithful adjoint functors between certain categories of logic algebras and the boolean logic category the logic(s) of life itself biological applications of Łukasiewicz–Moisil Algebras defining probabilities over LMn-algebras and their potential applications in biostatistics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baianu, I. C., R. Brown, G. Georgescu and J. F. Glazebrook: 2006, ‘Complex Nonlinear Biodynamics in Categories, Higher Dimensional Algebra and Łukasiewicz–Moisil Topos: Transformations of Neuronal, Genetic and Neoplastic Networks’, Axiomathes (current volume)Google Scholar
  2. Baianu, I. C. 1977A Logical Model of Genetic Activities in Łukasiewicz Algebras: The Non-linear TheoryBulletin of Mathematical Biology39249258CrossRefGoogle Scholar
  3. Birkhoff, G. 1948Lattice TheoryAmerican Mathematical SocietyNew YorkGoogle Scholar
  4. Boicescu, V., Filipoiu, A., Georgescu, G., Rudeanu, S. 1991Łukasiewicz–Moisil AlgebrasNorth-HollandAmsterdamGoogle Scholar
  5. Chang, C. C. 1958Algebraic Analysis of Many-Valued logicsTransactions American Mathematical Society88467490Google Scholar
  6. Chang, C. C. 1959A New Proof of the Completeness of the Łukasiewicz AxiomsTransactions American Mathematical Society937480Google Scholar
  7. Cignoli, R., Esteva, F., Godo, L., Torrens, A. 2000Basic Fuzzy Logic is the Logic of Continuous t-Norms and Their ResiduaSoft Computing4106112CrossRefGoogle Scholar
  8. Cignoli, R.: 1970. ‘Moisil Algebras’, Notas de Logica Matematica, Inst. Mat., Univ. Nacional del Sur, BahiaBlanca, No. 27Google Scholar
  9. Bourbaki, N. 1964Eléments de Mathématique, Livre II, Algébre, 4Hermann, EditorParisGoogle Scholar
  10. Carnap, R. 1938The Logical Syntax of LanguageHarcourt, Brace and Co.New YorkGoogle Scholar
  11. Ehresmann, C. 1965Catégories et StructuresDunodParisGoogle Scholar
  12. Eilenberg, S., MacLane, S. 1945The General Theory of Natural EquivalencesTransactions American Mathematical Society58231294Google Scholar
  13. Georgescu, G., Popescu, D. 1968On Algebraic CategoriesRev. Roum. Math. Pures et Appl.13337342Google Scholar
  14. Georgescu, G., Vraciu, C. 1970On the Characterization of Centered Łukasiewicz AlgebrasJournal of Algebra16486495CrossRefGoogle Scholar
  15. Georgescu, G., Leuştean, I. 2000Towards a Probability Theory Based on Moisil LogicSoft Computing41926CrossRefGoogle Scholar
  16. Grigolia, R. S. 1977Algebraic Analysis of Łukasiewicz–Tarski’s Logical SystemsWójcicki, R.Malinowski, G. eds. Selected Papers on Łukasiewicz Sentential CalculiOssolineumWroclaw8192Google Scholar
  17. Hilbert, D., Ackerman, W. 1927Grundzüge der theoretischen LogikSpringerBerlinGoogle Scholar
  18. Kan, D. M. 1958Adjoint FunctorsTransactions American Mathematical Society87294329Google Scholar
  19. Lambek, J., Scott, P. J. 1986Introduction to Higher Order Categorical LogicCambridge University PressCambridge, UKGoogle Scholar
  20. Lawvere, F. W. 1963Functorial Semantics of Algebraic TheoriesProceedings of the National Academy of Sciences USA50869872Google Scholar
  21. Löfgren, L. 1968An Axiomatic Explanation of Complete Self-ReproductionBulletin of Mathematical Biophysics30317348Google Scholar
  22. Łukasiewicz, J.: 1970. ‘Selected Works’, in L. Borkowski (ed.), North-Holland Publ. Co., Amsterdam and PWN, WarsawGoogle Scholar
  23. MacLane, S., Moerdijk, I. 1992Sheaves in Geometry and Logic – a first Introduction to Topos TheorySpringer VerlagNew YorkGoogle Scholar
  24. McCulloch, W., Pitts, W. 1943A Logical Calculus of Ideas Immanent in Nervous ActivityBulletin of Mathematical Biophysics5115133Google Scholar
  25. McNaughton, R. 1951A Theorem about Infinite-Valued Sentential LogicJournal of Symbolic Logic16113Google Scholar
  26. Mitchell, B. 1965Theory of CategoriesAcademic Press.LondonGoogle Scholar
  27. Moisil, Gr.C. 1972Essai sur les Logiques Non-chrysippiennesEd. AcademieiBucharestGoogle Scholar
  28. Mundici, D. 1986Interpretation of AF C*-algebras in Łukasiewicz Sentential CalculusJournal of Functional Analysis651563CrossRefGoogle Scholar
  29. Popescu, N. 1975Abelian Categories with applications to Rings and ModulesAcademic PressNew York and London(English translation by I.C. Baianu)Google Scholar
  30. Rose, A. 1956Formalisation du Calcul Propositionnel Implicatif à ϰ0 Valeurs de ŁukasiewiczC. R. Acad. Sci. Paris24311831185Google Scholar
  31. Rose, A., Rosser, J. B. 1958Fragments of Many-Valued Statement CalculiTransactions American Mathematical Society87153Google Scholar
  32. Rose, A. 1962Extensions of Some Theorems of Anderson and BelnapJournal of Symbolic Logic27423425Google Scholar
  33. Rose, A. 1978Formalisations of Further N0-Valued Łukasiewicz Propositional CalculiJournal of Symbolic Logic43207210Google Scholar
  34. Rosen, R. 1958aA Relational Theory of Biological SystemsBulletin of Mathematical Biophysics20245260Google Scholar
  35. Rosen, R. 1958bThe Representation of Biological Systems from the Standpoint of the Theory of CategoriesBulletin of Mathematical Biophysics20317341Google Scholar
  36. Rosen, R. 1991Life ItselfColumbia University PressNew YorkGoogle Scholar
  37. Rosen, R. 2000Essays on Life ItselfColumbia University PressNew YorkGoogle Scholar
  38. Rosenbloom, P. 1950The Elements of Mathematical LogicDoverNew YorkGoogle Scholar
  39. Rosenbloom, P. 1962The Elements of Mathematical LogicPrentice-HallEnglewood Cliffs N.J.Google Scholar
  40. Rosser, J. B., Turquette, A. R. 1952Many-Valued LogicsNorth-Holland Publ. CoAmsterdamGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • George Georgescu

There are no affiliations available

Personalised recommendations