Relative navigation of autonomous GPS-degraded micro air vehicles

  • David O. Wheeler
  • Daniel P. KochEmail author
  • James S. Jackson
  • Gary J. Ellingson
  • Paul W. Nyholm
  • Timothy W. McLain
  • Randal W. Beard


Unlike many current navigation approaches for micro air vehicles, the relative navigation (RN) framework presented in this paper ensures that the filter state remains observable in GPS-denied environments by working with respect to a local reference frame. By subtly restructuring the problem, RN ensures that the filter uncertainty remains bounded, consistent, and normally-distributed, and insulates flight-critical estimation and control processes from large global updates. This paper thoroughly outlines the RN framework and demonstrates its practicality with several long flight tests in unknown GPS-denied and GPS-degraded environments. The relative front end is shown to produce low-drift estimates and smooth, stable control while leveraging off-the-shelf algorithms. The system runs in real time with onboard processing, fuses a variety of vision sensors, and works indoors and outdoors without requiring special tuning for particular sensors or environments. RN is shown to produce globally-consistent, metric, and localized maps by incorporating loop closures and intermittent GPS measurements.


Aerial robotics GPS-denied Navigation GPS-degraded Observable 



This work has been funded by the Center for Unmanned Aircraft Systems (C-UAS), a National Science Foundation Industry/University Cooperative Research Center (I/UCRC) under NSF award Numbers IIP-1161036 and CNS-1650547, along with significant contributions from C-UAS industry members. This work was also supported in part by Air Force Research Laboratory Science and Technology (AFRL S&T) sponsorship. This research was conducted with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. The authors would like to thank Kevin Brink of the Air Force Research Laboratory Munitions Directorate (AFRL/RW) for his support of this project and for his valuable insights.


  1. Agarwal, P., Tipaldi, G. D., Spinello, L., Stachniss, C., & Burgard, W. (2013). Robust map optimization using dynamic covariance scaling. In IEEE international conference on robotics and automation (pp. 62–69)Google Scholar
  2. Bachrach, A., He, R., & Roy, N. (2010). Autonomous flight in unknown indoor environments. International Journal of Micro Air Vehicles, 1(4), 217–228.CrossRefGoogle Scholar
  3. Bachrach, A., Prentice, S., & Roy, N. (2011). RANGE-Robust autonomous navigation in GPS-denied environments. Journal of Field Robotics, 28(5), 644–666.CrossRefGoogle Scholar
  4. Bailey, T., Nieto, J., Guivant, J., Stevens, M., & Nebot, E. (2006). Consistency of the EKF-SLAM algorithm. In IEEE/RSJ international conference on intelligent robots and systems (pp. 3562–3568).Google Scholar
  5. Bar-Shalom, Y., Kirubarajan, T., & Li, X. R. (2002). Estimation with applications to tracking and navigation. New York: Wiley.Google Scholar
  6. Barfoot, T. D., & Furgale, P. T. (2014). Associating uncertainty with three-dimensional poses for use in estimation problems. IEEE Transactions on Robotics, 30(3), 679–693.CrossRefGoogle Scholar
  7. Blösch, M., Weiss, S., Scaramuzza, D., & Siegwart, R. (2010). Vision based MAV navigation in unknown and unstructured environments. In IEEE international conference on robotics and automation (pp. 21–28)Google Scholar
  8. Carlevaris-Bianco, N., Kaess, M., & Eustice, R. M. (2014). Generic node removal for factor-graph SLAM. IEEE Transactions on Robotics, 30(6), 1371–1385.CrossRefGoogle Scholar
  9. Carlone, L., Kira, Z., Beall, C., Indelman, V., & Dellaert, F. (2014). Eliminating conditionally independent sets in factor graphs: A unifying perspective based on smart factors. In IEEE international conference on robotics and automation (pp. 4290–4297).Google Scholar
  10. Censi, A. (2008). An ICP variant using a point-to-line metric. In IEEE international conference on robotics and automation (pp. 19–25).Google Scholar
  11. Chambers, A., Scherer, S., Yoder, L., Jain, S., Nuske, S., & Singh, S. (2014). Robust multi-sensor fusion for micro aerial vehicle navigation in GPS-degraded/denied environments. In American control conference (pp. 1892–1899).Google Scholar
  12. Chong, K. S., & Kleeman, L. (1999). Feature-based mapping in real, large scale environments using an ultrasonic array. International Journal of Robotics Research, 18(1), 3–19.Google Scholar
  13. Chowdhary, G., Johnson, E. N., Magree, D., Wu, A., & Shein, A. (2013). GPS-denied indoor and outdoor monocular vision-aided navigation and control of unmanned aircraft. Journal of Field Robotics, 30(3), 415–438.CrossRefGoogle Scholar
  14. Cummins, M., & Newman, P. (2011). Appearance-only SLAM at large scale with FAB-MAP 2.0. International Journal of Robotics Research, 30(9), 1100–1123.CrossRefGoogle Scholar
  15. Dellaert, F., & Kaess, M. (2006). Square root SAM: Simultaneous localization and mapping via square root information smoothing. International Journal of Robotics Research, 25(12), 1181–1203.zbMATHCrossRefGoogle Scholar
  16. Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.MathSciNetCrossRefGoogle Scholar
  17. Forster, C., Carlone, L., Dellaert, F., & Scaramuzza, D. (2015). IMU preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation (pp. 6–15). Robotics: Science and Systems.Google Scholar
  18. Fraundorfer, F., & Scaramuzza, D. (2012). Visual odometry: Part II: Matching, robustness, optimization, and applications. IEEE Robotics and Automation Magazine, 19(2), 78–90.CrossRefGoogle Scholar
  19. Glover, A., Maddern, W., Warren, M., Reid, S., Milford, M., & Wyeth, G. (2012). OpenFABMAP: An open source toolbox for appearance-based loop closure detection. In: IEEE international conference on robotics and automation (pp. 4730–4735).Google Scholar
  20. Grisetti, G., Kummerle, R., Stachniss, C., & Burgard, W. (2010). A tutorial on graph-based SLAM. Intelligent Transportation Systems Council, 2(4), 31–43.Google Scholar
  21. Grzonka, S., Grisetti, G., & Burgard, W. (2012). A fully autonomous indoor quadrotor. IEEE Transactions on Robotics, 28(1), 90–100.CrossRefGoogle Scholar
  22. Gutmann, J. S., & Schlegel, C. (1996). AMOS: Comparison of scan matching approaches for self-localization in indoor environments. In: Proceedings of the 1st Euromicro workshop on advanced mobile robots (pp. 61–67).Google Scholar
  23. Jackson, J., Nielsen, J., McLain, T., & Beard, R. (2019). Improving the robustness of visual-inertial extended Kalman filtering. In: IEEE international conference on robotics and automation.Google Scholar
  24. Jackson, J. S., Ellingson, G. S., & McLain, T. W. (2016a). ROSflight: a lightweight, inexpensive MAV research and development tool. In International conference on unmanned aircraft systems (pp. 758–762).Google Scholar
  25. Jackson, J.S., Wheeler, D.O., & McLain, T.W. (2016b). Cushioned extended-periphery avoidance: A reactive obstacle avoidance plugin. In International conference on unmanned aircraft systems (pp. 399–405).Google Scholar
  26. Jones, E., Vedaldi, A., & Soatto, S. (2007). Inertial structure from motion with autocalibration. In ICCV workshop on dynamical vision.Google Scholar
  27. Kaess, M., Ranganathan, A., & Dellaert, F. (2008). iSAM: Incremental smoothing and mapping. IEEE Transactions on Robotics, 24(6), 1365–1378.CrossRefGoogle Scholar
  28. Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F. (2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. International Journal of Robotics Research, 31(2), 216–235.CrossRefGoogle Scholar
  29. Kim, B., Kaess, M., Fletcher, L., Leonard, J., Bachrach, A., Roy, N., & Teller, S. (2010). Multiple relative pose graphs for robust cooperative mapping. In IEEE International Conference on Robotics and Automation (pp. 3185–3192)Google Scholar
  30. Koch, D. P., McLain, T. W., & Brink, K. M. (2016). Multi-sensor robust relative estimation framework for GPS-denied multirotor aircraft. In International Conference on Unmanned Aircraft Systems (pp. 589–597).Google Scholar
  31. Koch, D. P., Wheeler, D. O., Beard, R. W., McLain, T. W., & Brink, K. M. (2017). Relative multiplicative extended Kalman filter for observable GPS-denied navigation.
  32. Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., & Burgard, W. (2011). g2o: A general framework for graph optimization. In IEEE international conference on robotics and automation (pp. 3607–3613).Google Scholar
  33. Latif, Y., Cadena, C., & Neira, J. (2013). Robust loop closing over time for pose graph SLAM. International Journal of Robotics Research, 32(14), 1611–1626.CrossRefGoogle Scholar
  34. Leishman, R. C., McLain, T. W., & Beard, R. W. (2014). Relative navigation approach for vision-based aerial GPS-denied navigation. Journal of Intelligent and Robotic Systems, 74(1), 97–111.CrossRefGoogle Scholar
  35. Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., & Furgale, P. (2015). Keyframe-based visual-inertial odometry using nonlinear optimization. International Journal of Robotics Research, 34(3), 314–334.CrossRefGoogle Scholar
  36. Long, A., Wolfe, K., Mashner, M., & Chirikjian, G. (2012). The banana distribution is Gaussian: A localization study with exponential coordinates. In Robotics: science and systems (p. 8)Google Scholar
  37. Lowry, S., Sunderhauf, N., Newman, P., Leonard, J. J., Cox, D., Corke, P., et al. (2016). Visual place recognition: A survey. IEEE Transactions on Robotics, 32(1), 1–19.CrossRefGoogle Scholar
  38. Martinelli, A. (2012). Vision and IMU data fusion: Closed-form solutions for attitude, speed, absolute scale, and bias determination. IEEE Transactions on Robotics, 28(1), 44–60.CrossRefGoogle Scholar
  39. Michael, N., Mellinger, D., Lindsey, Q., & Kumar, V. (2010). The GRASP multiple micro-UAV testbed. IEEE Robotics and Automation Magazine, 17(3), 56–65.CrossRefGoogle Scholar
  40. Moore, D., Huang, A., Walter, M., Olson, E., Fletcher, L., Leonard, J., & Teller, S. (2009). Simultaneous local and global state estimation for robotic navigation. In: IEEE international conference on robotics and automation (pp. 3794–3799).Google Scholar
  41. Nister, D., & Stewenius, H. (2006). Scalable recognition with a vocabulary tree. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2, 2161–2168.Google Scholar
  42. Olson, E., & Agarwal, P. (2013). Inference on networks of mixtures for robust robot mapping. International Journal of Robotics Research, 32(7), 826–840.CrossRefGoogle Scholar
  43. Olson, E., Leonard, J., & Teller, S. (2006). Fast iterative alignment of pose graphs with poor initial estimates. In IEEE international conference on robotics and automation (pp. 2262–2269)Google Scholar
  44. PricewaterhouseCoopers. (2016). Clarity from above: PwC global report on commercial applications of drone technology. Accessed March 30, 2017.
  45. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A. Y. (2009). ROS: An open-source robot operating system. In: ICRA workshop on open source software.Google Scholar
  46. Raffo, G. V., Ortega, M. G., & Rubio, F. R. (2010). An integral predictive/nonlinear H-infinity control structure for a quadrotor helicopter. Automatica, 46(1), 29–39.MathSciNetzbMATHCrossRefGoogle Scholar
  47. Rehder, J., Gupta, K., Nuske, S., & Singh, S. (2012). Global pose estimation with limited GPS and long range visual odometry. In: IEEE international conference on robotics and automation (pp. 627–633)Google Scholar
  48. Roumeliotis, S.I., & Burdick, J. (2002). Stochastic cloning: a generalized framework for processing relative state measurements. In IEEE International Conference on Robotics and Automation (pp. 1788–1795)Google Scholar
  49. Scaramuzza, D., & Fraundorfer, F. (2011). Visual odometry: Part I: The first 30 years and fundamentals. IEEE Robotics and Automation Magazine, 18(4), 80–92.CrossRefGoogle Scholar
  50. Scaramuzza, D., Achtelik, M. C., Doitsidis, L., Friedrich, F., Kosmatopoulos, E., Martinelli, A., et al. (2014). Vision-controlled micro flying robots: From system design to autonomous navigation and mapping in GPS-denied environments. IEEE Robotics and Automation Magazine, 21(3), 26–40.CrossRefGoogle Scholar
  51. Scherer, S., Rehder, J., Achar, S., Cover, H., Chambers, A., Nuske, S., et al. (2012). River mapping from a flying robot: State estimation, river detection, and obstacle mapping. Autonomous Robots, 33(1), 189–214.CrossRefGoogle Scholar
  52. Scherer, S., Yang, S., & Zell, A. (2015). DCTAM: Drift-corrected tracking and mapping for autonomous micro aerial vehicles. In International conference on unmanned aircraft systems (pp. 1094–1101).Google Scholar
  53. Shen, S., Mulgaonkar, Y., Michael, N., & Kumar, V. (2014). Multi-sensor fusion for robust autonomous flight in indoor and outdoor environments with a rotorcraft MAV. In IEEE international conference on robotics and automation (pp 4974–4981).Google Scholar
  54. Sibley, D., Mei, C., Reid, I.D., & Newman, P. (2009). Adaptive relative bundle adjustment. In Robotics: Science and Systems Google Scholar
  55. Sivic, Zisserman. (2003). Video Google: A text retrieval approach to object matching in videos. IEEE International Conference on Computer Vision, 2, 1470–1477.CrossRefGoogle Scholar
  56. Sunderhauf, N., & Protzel, P. (2013). Switchable constraints vs. max-mixture models vs. RRR—a comparison of three approaches to robust pose graph SLAM. In IEEE international conference on robotics and automation (pp. 5198–5203)Google Scholar
  57. Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge: MIT Press.zbMATHGoogle Scholar
  58. Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M., Mair, E., et al. (2012). Toward a fully autonomous UAV: Research platform for indoor and outdoor urban search and rescue. IEEE Robotics and Automation Magazine, 19(3), 46–56.CrossRefGoogle Scholar
  59. Weiss, S., & Siegwart, R. (2011). Real-time metric state estimation for modular vision-inertial systems. In IEEE international conference on robotics and automation (pp. 4531–4537).Google Scholar
  60. Weiss, S., Achtelik, M. W., Lynen, S., Chli, M., & Siegwart, R. (2012). Real-time onboard visual-inertial state estimation and self-calibration of MAVs in unknown environments. In IEEE International Conference on Robotics and Automation (pp. 957–964).Google Scholar
  61. Wheeler, D. O., Nyholm, P. W., Koch, D. P., Ellingson, G. J., McLain, T. W., & Beard, R. W. (2016). Relative navigation in GPS-degraded environments. In Encyclopedia of aerospace engineering (pp. 1–10). Hoboken: WileyGoogle Scholar
  62. Wheeler, D. O., Koch, D. P., Jackson, J. S., Mclain, T. W., & Beard, R. W. (2018). Relative navigation: A keyframe-based approach for observable GPS-degraded navigation. IEEE Control Systems Magazine, 38(4), 30–48.MathSciNetCrossRefGoogle Scholar
  63. Zhang, J., Kaess, M., & Singh, S. (2014). Real-time depth enhanced monocular odometry. In IEEE/RSJ international conference on intelligent robots and systems (pp. 4973–4980).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringBrigham Young UniversityProvoUSA
  2. 2.Department of Mechanical EngineeringBrigham Young UniversityProvoUSA

Personalised recommendations