Advertisement

Live multicast video streaming from drones: an experimental study

  • Raheeb MuzaffarEmail author
  • Evşen Yanmaz
  • Christian Raffelsberger
  • Christian Bettstetter
  • Andrea Cavallaro
Article
  • 55 Downloads
Part of the following topical collections:
  1. Special Issue on Robot Communication Challenges: Real-World Problems, Systems, and Methods

Abstract

We present and evaluate a multicast framework for point-to-multipoint and multipoint-to-point-to-multipoint video streaming that is applicable if both source and receiver nodes are mobile. Receiver nodes can join a multicast group by selecting a particular video stream and are dynamically elected as designated nodes based on their signal quality to provide feedback about packet reception. We evaluate the proposed application-layer rate-adaptive multicast video streaming over an aerial ad-hoc network that uses IEEE 802.11, a desirable protocol that, however, does not support a reliable multicast mechanism due to its inability to provide feedback from the receivers. Our rate-adaptive approach outperforms legacy multicast in terms of goodput, delay, and packet loss. Moreover, we obtain a gain in video quality (PSNR) of \(30\%\) for point-to-multipoint and of \(20\%\) for multipoint-to-point-to-multipoint streaming.

Keywords

Multicast video streaming Rate-adaptation IEEE 802.11 Drones 

Notes

Acknowledgements

The authors would like to thank Arke Vogell and Micha Rappaport for acting as pilots for the test scenarios.

References

  1. Ahmed, N., Kanhere, S.S., & Jha, S. (2011). Link characterization for aerial wireless sensor networks. In Proceedings of IEEE Global Communications Conference (GLOBECOM).Google Scholar
  2. Andre, T., Hummel, K. A., Schoellig, A. P., Yanmaz, E., Asadpour, M., Bettstetter, C., et al. (2014). Application-driven design of aerial communication networks. IEEE Communications Magazine, 52(5), 129–137.CrossRefGoogle Scholar
  3. Ascending Technologies (n.d.) AscTec Pelican. http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-pelican, last accessed Aug 2018
  4. Banchs, A., de la Oliva, A., Eznarriaga, L., Kowalski, D. R., & Serrano, P. (2014). Performance analysis and algorithm selection for reliable multicast in IEEE 802.11aa wireless LAN. IEEE Transactions on Vehicular Technology, 63(8), 3875–3891.CrossRefGoogle Scholar
  5. Bekmezci, I., Sahingoz, O. K., & Temel, S. (2013). Flying ad-hoc networks (FANETs): A survey. Elsevier Ad-hoc Networks, 11(3), 1254–1270.CrossRefGoogle Scholar
  6. Biaz, S., & Wu, S. (2008). Rate adaptation algorithms for IEEE 802.11 networks: A survey and comparison. In Proceedings of IEEE Symposium on Computers and Communications (ISCC).Google Scholar
  7. Chandra, R., Karanth, S., Moscibroda, T., Navda, V., Padhye, J., Ramjee, R., & Ravindranath, L. (2009). Dircast: A practical and efficient Wi-Fi multicast system. In Proceedings of IEEE International Conference on Network Protocols (ICNP).Google Scholar
  8. Chmaj, G., & Selvaraj, H. (2015). Distributed processing applications for UAV/drones: A survey. In Proceedings of Springer International Conference on Systems Engineering (ICSENG).Google Scholar
  9. Choi, S., Choi, N., Seok, Y., Kwon, T., & Choi, Y. (2007). Leader-based rate adaptive multicasting for wireless LANs. In Proceedings of IEEE Global Communications Conference (GLOBECOM).Google Scholar
  10. Crete, F., Dolmiere, T., Ladret, P., & Nicolas, M. (2007). The blur effect: perception and estimation with a new no-reference perceptual blur metric. In Proceedings of SPIE Human Vision and Electronic Imaging (HVEI).Google Scholar
  11. Crow, B. P., Widjaja, I., Kim, J. G., & Sakai, P. T. (1997). IEEE 802.11 wireless local area networks. IEEE Communications Magazine, 35(9), 116–126.CrossRefGoogle Scholar
  12. Dujovne, D., & Turletti, T. (2006). Multicast in 802.11 WLANs: An experimental study. In Proceedings of ACM Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM).Google Scholar
  13. Fu, X., Ma, W., & Zhang, Q. (2007). The IEEE 802.16 and 802.11 a coexistence in the license-exempt band. In Proceedings of IEEE Wireless Communications and Networking Conference (WCNC).Google Scholar
  14. Ge, P., & McKinley, P.K. (2002). Comparisons of error control techniques for wireless video multicasting. In Proceedings of IEEE International Performance, Computing, and Communications Conference (IPCCC).Google Scholar
  15. Gringoli, F., Serrano, P., Ucar, I., Facchi, N., & Azcorra, A. (2018). Experimental QoE evaluation of multicast video delivery over IEEE 802.11aa WLANs. IEEE Transactions on Mobile Computing.  https://doi.org/10.1109/TMC.2018.2876000.
  16. Gross, J., Klaue, J., Karl, H., & Wolisz, A. (2004). Cross-layer optimization of OFDM transmission systems for MPEG-4 video streaming. Elsevier Computer communications, 27(11), 1044–1055.CrossRefGoogle Scholar
  17. Gupte, S., Mohandas, P.I.T., & Conrad, J.M. (2012). A survey of quadrotor unmanned aerial vehicles. In Proceedings of IEEE Southeastcon.Google Scholar
  18. Hanscom, A.F.B., & Bedford, M. (2013). Unmanned aircraft system (UAS) service demand 2015-2035: Literature review and projections of future usage. Tech. rep., U.S. department of transportation, John A. Volpe national transportation systems center, https://fas.org/irp/program/collect/service.pdf, last accessed Aug 2018.
  19. Hayat, S., Yanmaz, E., & Muzaffar, R. (2016). Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Communications Surveys & Tutorials, 18(4), 2624–2661.CrossRefGoogle Scholar
  20. Kacianka, S., & Hellwagner, H. (2015). Adaptive video streaming for UAV networks. In Proceedings of ACM International Workshop on Mobile Video (MoVid).Google Scholar
  21. Kamerman, A., & Monteban, L. (1997). WaveLAN-II: A high-performance wireless LAN for the unlicensed band. Bell Labs Technical Journal, 2(3), 118–133.CrossRefGoogle Scholar
  22. Kofler, I., Kuschnig, R., & Hellwagner, H. (2011). In-network adaptation of H.264/SVC for HD video streaming over 802.11g networks. In Proceedings of International Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV).Google Scholar
  23. Kuri, J., & Kasera, S.K. (1999). Reliable multicast in multi-access wireless LANs. In Proceedings of IEEE Conference on Computer Communications (INFOCOM.Google Scholar
  24. Li, Z., & Herfet, T. (2008). Beacon-driven leader based protocol over a GE channel for MAC layer multicast error control. International Journal of Communications, Network and System Sciences, 1(2), 144–153.CrossRefGoogle Scholar
  25. Li, Z., & Herfet, T. (2009). MAC layer multicast error control for IPTV in wireless LANs. IEEE Transactions on Broadcasting, 55(2), 353–362.CrossRefGoogle Scholar
  26. Lindeberg, M., Kristiansen, S., Plagemann, T., & Goebel, V. (2011). Challenges and techniques for video streaming over mobile ad-hoc networks. Springer Multimedia Systems, 17(1), 51–82.CrossRefGoogle Scholar
  27. LinuxWireless Project (n.d.) Minstrel Specification. https://wireless.HrBwiki.kernel.org/en/developers/do-cumentation/mac80211/rateconHrBtrol/minstrel, last accessed Aug 2018.
  28. Maraslis, K., Chatzimisios, P., & Boucouvalas, A. (2012). IEEE 802.11aa: Improvements on video transmission over wireless LANs. In Proceedings of IEEE International Conference on Communications (ICC).Google Scholar
  29. MikroTik (n.d.) MikroTik - R11e-5HnD. https://www.mikrotik-store.eu/de/mikrotik-r11e-5hnd, last accessed Aug 2018.
  30. Muzaffar, R., Vukadinovic, V., & Cavallaro, A. (2016a). Rate-adaptive multicast video streaming from teams of micro aerial vehicles. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
  31. Muzaffar, R., Yanmaz, E., Bettstetter, C., & Cavallaro, A. (2016b). Application-layer rate-adaptive multicast video streaming over 802.11 for mobile devices. In Proceedings of ACM Multimedia (ACMMM).Google Scholar
  32. Nafaa, A. (2007). Provisioning of multimedia services in 802.11-based networks: Facts and challenges. IEEE Wireless Communications, 14(5), 106–112.CrossRefGoogle Scholar
  33. Netflix (n.d.) Video multi-method assessment fusion. https://github.com/Netflix/vmaf, last accessed Aug 2018.
  34. NVIDIA (n.d.) NVIDIA Jetson TK1 developer kit. http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html, last accessed Aug 2018.
  35. Paris, S., Facchi, N., Gringoli, F., & Capone, A. (2013). An innovative rate adaptation algorithm for multicast transmissions in wireless LANs. In Proceedings of IEEE Vehicular Technology Conference (VTC).Google Scholar
  36. Park, Y., Seok, Y., Choi, N., Choi, Y., & Bonnin, J.M. (2006). Rate-adaptive multimedia multicasting over IEEE 802.11 wireless LANs. In Proceedings of IEEE Consumer Communications and Networking Conference (CCNC).Google Scholar
  37. Piamrat, K., Ksentini, A., Bonnin, J.M., & Viho, C. (2009). Q-DRAM: QoE-based dynamic rate adaptation mechanism for multicast in wireless networks. In Proceedings of IEEE Global Telecommunications Conference (GLOBECOM).Google Scholar
  38. Quaritsch, M., Stojanovski, E., Bettstetter, C., Friedrich, G., Hellwagner, H., Rinner, B., Hofbaur, M., & Shah, M. (2008). Collaborative microdrones: Applications and research challenges. In Proceedings of ACM Autonomics.Google Scholar
  39. Salvador, P., Cominardi, L., Gringoli, F., & Serrano, P. (2013). A first implementation and evaluation of the IEEE 802.11aa group addressed transmission service. ACM SIGCOMM Computer Communication Review, 44(1), 35–41.CrossRefGoogle Scholar
  40. Su, G. M., Su, X., Bai, Y., Wang, M., Vasilakos, A. V., & Wang, H. (2016). QoE in video streaming over wireless networks: Perspectives and research challenges. Springer Wireless Networks, 22(5), 1571–1593.CrossRefGoogle Scholar
  41. Takai, M., Martin, J., & Bagrodia, R. (2001). Effects of wireless physical layer modeling in mobile ad-hoc networks. In Proceedings of ACM Mobile Ad-hoc Networking and Computing (MobiHoc).Google Scholar
  42. Team G (n.d.) Gstreamer framework. https://gstreamer.freedesktop.org/, last accessed Aug 2018.
  43. Thierry, T., & Yongho, S. (2006). Practical rate-adaptive multicast schemes for multimedia over IEEE 802.11 WLANs. inria research report rr-5993. https://hal.inria.fr/inria-00104699, last accessed Aug 2018.
  44. Tourrilhes, J. (1998). Robust broadcast: Improving the reliability of broadcast transmissions on CSMA/CA. In Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).Google Scholar
  45. Vella, J. M., & Zammit, S. (2013). A survey of multicasting over wireless access networks. IEEE Communications Surveys & Tutorials, 15(2), 718–753.CrossRefGoogle Scholar
  46. Yanmaz, E., Kuschnig, R., & Bettstetter, C. (2011). Channel measurements over 802.11a-based UAV-to-ground links. In IEEE Global Telecommunications Conference (GLOBECOM Wkshps).Google Scholar
  47. Yanmaz, E., Kuschnig, R., & Bettstetter, C. (2013). Achieving air-ground communications in 802.11 networks with three-dimensional aerial mobility. In Proceedings of IEEE Conference on Computer Communications (INFOCOM).Google Scholar
  48. Yin, W., Hu, P., Indulska, J., & Bialkowski, K. (2011). Performance of mac80211 rate control mechanisms. In Proceedings of ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM).Google Scholar
  49. Zhu, H., Li, M., Chlamtac, I., & Prabhakaran, B. (2004). A survey of quality of service in IEEE 802.11 networks. IEEE Wireless Communications, 11(4), 6–14.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lakeside Labs GmbHKlagenfurtAustria
  2. 2.Ozyegin UniversityIstanbulTurkey
  3. 3.Institute of Networked and Embedded SystemsAlpen-Adria-Universität KlagenfurtKlagenfurtAustria
  4. 4.Centre for Intelligent SensingQueen Mary University of LondonLondonUK

Personalised recommendations