Advertisement

Autonomous Robots

, Volume 43, Issue 6, pp 1537–1554 | Cite as

Neuromuscular model achieving speed control and steering with a 3D bipedal walker

  • Nicolas Van der NootEmail author
  • Auke Jan Ijspeert
  • Renaud Ronsse
Article

Abstract

Nowadays, very few humanoid robots manage to travel in our daily environments. This is mainly due to their limited locomotion capabilities, far from the human ones. Recently, we developed a bio-inspired torque-based controller recruiting virtual muscles driven by reflexes and a central pattern generator. Straight walking experiments were obtained in a 3D simulation environment, resulting in the emergence of human-like and robust gait patterns, with speed modulation capabilities. In this paper, we extend this model, in order to control the steering direction and curvature. Based on human turning strategies, new control pathways are introduced and optimized to reach the sharpest possible turns. In sum, tele-operated motions can be achieved through the control of two scalar inputs (i.e. forward speed and heading). This is particularly relevant for steering the robot on-line, and navigating in cluttered environments. Finally, the biped demonstrated significant robustness during blind walking experiments.

Keywords

Biologically-inspired robots Humanoid robots Legged robots Motion control Curved walking 

Notes

Supplementary material

10514_2018_9814_MOESM1_ESM.zip (7.7 mb)
Supplementary material 1 (zip 7903 KB)

Supplementary material 2 (mp4 15095 KB)

Supplementary material 3 (mp4 2532 KB)

References

  1. Aoi, S., & Tsuchiya, K. (2005). Locomotion control of a biped robot using nonlinear oscillators. Autonomous Robots, 19(3), 219–232.  https://doi.org/10.1007/s10514-005-4051-1.CrossRefGoogle Scholar
  2. Arechavaleta, G., Laumond, J. P., Hicheur, H., & Berthoz, A. (2008). An optimality principle governing human walking. IEEE Transactions on Robotics, 24(1), 5–14.  https://doi.org/10.1109/TRO.2008.915449.CrossRefGoogle Scholar
  3. Chestnutt, J., Lau, M., Cheung, G., Kuffner, J., Hodgins, J., & Kanade, T. (2005). Footstep planning for the Honda ASIMO humanoid. In Proceedings of the 2005 IEEE international conference on robotics and automation (pp. 629–634). IEEE.  https://doi.org/10.1109/ROBOT.2005.1570188.
  4. Colasanto, L., Van der Noot, N., & Ijspeert, A. J. (2015). Bio-inspired walking for humanoid robots using feet with human-like compliance and neuromuscular control. In 2015 IEEE-RAS 15th international conference on humanoid robots (humanoids) (pp. 26–32).  https://doi.org/10.1109/HUMANOIDS.2015.7363518.
  5. Collins, S., & Ruina, A. (2005). A bipedal walking robot with efficient and human-like gait. In Proceedings of the 2005 IEEE international conference on robotics and automation (pp. 1983–1988). IEEE.  https://doi.org/10.1109/ROBOT.2005.1570404.
  6. Courtine, G., & Schieppati, M. (2003). Human walking along a curved path. I. Body trajectory, segment orientation and the effect of vision. The European Journal of Neuroscience, 18(1), 177–190.CrossRefGoogle Scholar
  7. Courtine, G., Papaxanthis, C., & Schieppati, M. (2006). Coordinated modulation of locomotor muscle synergies constructs straight-ahead and curvilinear walking in humans. Experimental Brain Research, 170(3), 320–35.  https://doi.org/10.1007/s00221-005-0215-7.CrossRefGoogle Scholar
  8. Daley, M. A., Felix, G., & Biewener, A. A. (2007). Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control. The Journal of Experimental Biology, 210(Pt 3), 383–394.  https://doi.org/10.1242/jeb.02668.CrossRefGoogle Scholar
  9. Dallali, H. (2011). Modelling and dynamic stabilization of a compliant humanoid robot, CoMan. Ph.D. thesis, University of Manchester.Google Scholar
  10. Dallali, H., Mosadeghzad, M., Medrano-Cerda, G., Docquier, N., Kormushev, P., Tsagarakis, N., et al. (2013). Development of a dynamic simulator for a compliant humanoid robot based on a symbolic multibody approach. In 2013 IEEE international conference on mechatronics, ICM (pp. 598–603). IEEE.  https://doi.org/10.1109/ICMECH.2013.6519110.
  11. Deits, R., & Tedrake, R. (2014). Footstep planning on uneven terrain with mixed-integer convex optimization. In 2014 IEEE-RAS international conference on humanoid robots (pp. 279–286).  https://doi.org/10.1109/HUMANOIDS.2014.7041373.
  12. Desai, R., & Geyer, H. (2013). Muscle-reflex control of robust swing leg placement. In 2013 IEEE international conference on robotics and automation (pp. 2169–2174). IEEE.  https://doi.org/10.1109/ICRA.2013.6630868.
  13. Docquier, N., Poncelet, A., & Fisette, P. (2013). ROBOTRAN: A powerful symbolic generator of multibody models. Mechanical Sciences, 4(1), 199–219.  https://doi.org/10.5194/ms-4-199-2013.CrossRefGoogle Scholar
  14. Dzeladini, F., van den Kieboom, J., & Ijspeert, A. (2014). The contribution of a central pattern generator in a reflex-based neuromuscular model. Frontiers in Human Neuroscience, 8(June), 1–18.  https://doi.org/10.3389/fnhum.2014.00371.CrossRefGoogle Scholar
  15. Eilenberg, M. F., Geyer, H., & Herr, H. (2010). Control of a powered ankle–foot prosthesis based on a neuromuscular model. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(2), 164–173.  https://doi.org/10.1109/TNSRE.2009.2039620.CrossRefGoogle Scholar
  16. Faraji, S., Pouya, S., & Ijspeert, A. (2014). Robust and agile 3d biped walking with steering capability using a footstep predictive approach. Robotics: Science and Systems Foundation.  https://doi.org/10.15607/RSS.2014.X.028.
  17. Fitzpatrick, P., Harada, K., Kemp, C. C., Matsumoto, Y., Yokoi, K., & Yoshida, E. (2016). Humanoids. In O. Khatib & B. Siciliano (Eds.), Springer handbook of robotics (pp. 1789–1818). Berlin: Springer International Publishing.CrossRefGoogle Scholar
  18. Geijtenbeek, T., van de Panne, M., & van der Stappen, A. F. (2013). Flexible muscle-based locomotion for bipedal creatures. ACM Transactions on Graphics, 32(6), 206:1–206:11.  https://doi.org/10.1145/2508363.2508399.CrossRefGoogle Scholar
  19. Geyer, H., & Herr, H. (2010). A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(3), 263–73.  https://doi.org/10.1109/TNSRE.2010.2047592.CrossRefGoogle Scholar
  20. Heremans, F., Van der Noot, N., Ijspeert, A. J., & Ronsse, R. (2016). Bio-inspired balance controller for a humanoid robot. In 2016 6th IEEE international conference on biomedical robotics and biomechatronics (BioRob) (pp. 441–448).  https://doi.org/10.1109/BIOROB.2016.7523667.
  21. Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society B: Biological Sciences, 126(843), 136–195.  https://doi.org/10.1098/rspb.1938.0050.CrossRefGoogle Scholar
  22. Hobbelen, D. G. E., & Wisse, M. (2007). Humanoid robots, human-like machines—Chapter 14: limit cycle walking.  https://doi.org/10.5772/4808.
  23. Hobbelen, D., Boer, T., & Wisse, M. (2008). System overview of bipedal robots flame and TUlip: Tailor-made for limit cycle walking. In 2008 IEEE/RSJ international conference on intelligent robots and systems (pp. 2486–2491).  https://doi.org/10.1109/IROS.2008.4650728.
  24. Horak, F. B., & Nashner, L. M. (1986). Central programming of postural movements: Adaptation to altered support-surface configurations. Journal of Neurophysiology, 55(6), 1369–1381.CrossRefGoogle Scholar
  25. Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21(4), 642–653.  https://doi.org/10.1016/j.neunet.2008.03.014.CrossRefGoogle Scholar
  26. Johnson, M., Shrewsbury, B., Bertrand, S., Calvert, D., Wu, T., Duran, D., et al. (2016). Team IHMC’s lessons learned from the DARPA robotics challenge: Finding data in the rubble. Journal of Field Robotics.  https://doi.org/10.1002/rob.21674.
  27. Kaneko, K., Kanehiro, F., Kajita, S., Yokoyama, K., Akachi, K., Kawasaki, T., et al. (2002). Design of prototype humanoid robotics platform for HRP. In IEEE/RSJ international conference on intelligent robots and system (Vol. 3, pp. 2431–2436). IEEE.  https://doi.org/10.1109/IRDS.2002.1041632.
  28. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95–international conference on neural networks (Vol. 4, pp. 1942–1948). IEEE.  https://doi.org/10.1109/ICNN.1995.488968.
  29. Kuo, A. D. (2002). The relative roles of feedforward and feedback in the control of rhythmic movements. Motor Control, 6(2), 129–145.CrossRefGoogle Scholar
  30. Kurazume, R., Tanaka, S., Yamashita, M., Hasegawa, T., & Yoneda, K. (2005). Straight legged walking of a biped robot. In 2005 IEEE/RSJ international conference on intelligent robots and systems (pp. 337–343). IEEE.  https://doi.org/10.1109/IROS.2005.1545447.
  31. Matsuoka, K. (1985). Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological cybernetics, 52(6), 367–376.  https://doi.org/10.1007/BF00449593.MathSciNetzbMATHCrossRefGoogle Scholar
  32. Matsuoka, K. (1987). Mechanisms of frequency and pattern control in the neural rhythm generators. Biological Cybernetics, 56(5–6), 345–353.  https://doi.org/10.1007/BF00319514.CrossRefGoogle Scholar
  33. McCrea, D. A., & Rybak, I. A. (2008). Organization of mammalian locomotor rhythm and pattern generation. Brain Research Reviews, 57(1), 134–146.  https://doi.org/10.1016/j.brainresrev.2007.08.006.CrossRefGoogle Scholar
  34. McGeer, T. (1990). Passive dynamic walking. The International Journal of Robotics Research, 9(2), 62–82.  https://doi.org/10.1177/027836499000900206.CrossRefGoogle Scholar
  35. Minassian, K., Hofstoetter, US., Dzeladini, F., Guertin, PA., Ijspeert, A. (2017). The human central pattern generator for locomotion: Does it exist and contribute to walking? The Neuroscientist.  https://doi.org/10.1177/1073858417699790.
  36. Patla, A. E., Adkin, A., & Ballard, T. (1999). Online steering: Coordination and control of body center of mass, head and body reorientation. Experimental Brain Research, 129(4), 629–634.  https://doi.org/10.1007/s002210050932.CrossRefGoogle Scholar
  37. Paul, C., Bellotti, M., Jezernik, S., & Curt, A. (2005). Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury. Biological Cybernetics, 93(3), 153–170.  https://doi.org/10.1007/s00422-005-0559-x.zbMATHCrossRefGoogle Scholar
  38. Rossignol, S., Dubuc, R., & Gossard, J. P. (2006). Dynamic sensorimotor interactions in locomotion. Physiological Reviews, 86(1), 89–154.  https://doi.org/10.1152/physrev.00028.2005.CrossRefGoogle Scholar
  39. Samin, JC., Fisette, P. (2003). Symbolic modeling of multibody systems. In Solid mechanics and its applications (Vol. 112). Springer.Google Scholar
  40. Sardain, P., & Bessonnet, G. (2004). Zero moment point-measurements from a human walker wearing robot feet as shoes. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 34(5), 638–648.  https://doi.org/10.1109/TSMCA.2004.832833.CrossRefGoogle Scholar
  41. Schaal, S. (2007). The new robotics-towards human-centered machines. HFSP Journal, 1(2), 115–26.  https://doi.org/10.2976/1.2748612.CrossRefGoogle Scholar
  42. Smith, E. P., & Rose, K. A. (1995). Model goodness-of-fit analysis using regression and related techniques. Ecological Modelling, 77(1), 49–64.  https://doi.org/10.1016/0304-3800(93)E0074-D.CrossRefGoogle Scholar
  43. Song, S., & Geyer, H. (2015). A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. The Journal of Physiology.  https://doi.org/10.1113/JP270228.
  44. Stokes, V. P., Andersson, C., & Forssberg, H. (1989). Rotational and translational movement features of the pelvis and thorax during adult human locomotion. Journal of Biomechanics, 22(1), 43–50.CrossRefGoogle Scholar
  45. Taga, G. (1994). Emergence of bipedal locomotion through entrainment among the neuro-musculo-skeletal system and the environment. Physica D: Nonlinear Phenomena, 75(1–3), 190–208.  https://doi.org/10.1016/0167-2789(94)90283-6.zbMATHCrossRefGoogle Scholar
  46. Tsagarakis, N., Laffranchi, M., Vanderborght, B., & Caldwell, D. (2009). A compact soft actuator unit for small scale human friendly robots. In 2009 IEEE international conference on robotics and automation (pp. 4356–4362).  https://doi.org/10.1109/ROBOT.2009.5152496.
  47. Tsagarakis, N. G., Morfey, S., Medrano Cerda, G., Li, Z., & Caldwell, D. G. (2013). COMpliant huMANoid COMAN: Optimal joint stiffness tuning for modal frequency control. In Proceedings—IEEE international conference on robotics and automation (pp. 673–678).  https://doi.org/10.1109/ICRA.2013.6630645.
  48. Van der Noot, N., Colasanto, L., Barrea, A., van den Kieboom, J., Ronsse, R., & Ijspeert, A. J. (2015a). Experimental validation of a bio-inspired controller for dynamic walking with a humanoid robot. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 393–400).  https://doi.org/10.1109/IROS.2015.7353403.
  49. Van der Noot, N., Ijspeert, A. J., & Ronsse, R. (2015b). Biped gait controller for large speed variations, combining reflexes and a central pattern generator in a neuromuscular model. In 2015 IEEE international conference on robotics and automation (ICRA), Seattle, WA (pp. 6267–6274).  https://doi.org/10.1109/ICRA.2015.7140079.
  50. Van der Noot, N., Ijspeert, A. J., & Ronsse, R. (2018). Bio-inspired controller achieving forward speed modulation with a 3d bipedal walker. The International Journal of Robotics Research, 37(1), 168–196.  https://doi.org/10.1177/0278364917743320.CrossRefGoogle Scholar
  51. Vukobratovic, M., & Borovac, B. (2004). Zero-moment point-thirty five years of its life. International Journal of Humanoid Robotics, 01(01), 157–173.  https://doi.org/10.1142/S0219843604000083.CrossRefGoogle Scholar
  52. Wang, J. M., Hamner, S. R., Delp, S. L., & Koltun, V. (2012). Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Transactions on Graphics, 31, 25.Google Scholar
  53. Winter, D. A. (1995). Anatomy, biomechanics and control of balance during standing and walking. Waterloo: Waterloo Biomechanics.Google Scholar
  54. Zobova, A. A., Habra, T., Van der Noot, N., Dallali, H., Tsagarakis, N. G., Fisette, P., et al. (2017). Multi-physics modelling of a compliant humanoid robot. Multibody System Dynamics, 39(1–2), 95–114.  https://doi.org/10.1007/s11044-016-9545-4.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Research in Mechatronics, Institute of Mechanics, Materials and Civil EngineeringUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Biorobotics Laboratory, Institute of BioengineeringÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations