Advertisement

Autonomous Robots

, Volume 43, Issue 3, pp 789–811 | Cite as

Real-time distributed non-myopic task selection for heterogeneous robotic teams

  • Andrew J. SmithEmail author
  • Graeme Best
  • Javier Yu
  • Geoffrey A. Hollinger
Article
  • 170 Downloads
Part of the following topical collections:
  1. Special Issue: Foundations of Resilience for Networked Robotic Systems

Abstract

In this paper we introduce a novel algorithm for online distributed non-myopic task-selection in heterogeneous robotic teams. Our algorithm uses a temporal probabilistic representation that allows agents to evaluate their actions in the team’s joint action space while robots individually search their own action space. We use Monte-Carlo tree search to asymmetrically search through the robot’s individual action space while accounting for the probable future actions of their team members using the condensed temporal representation. This allows a distributed team of robots to non-myopically coordinate their actions in real-time. Our developed method can be applied across a wide range of tasks, robot team compositions, and reward functions. To evaluate our coordination method, we implemented it for a series of simulated and fielded hardware trials where we found that our coordination method is able to increase the cumulative team reward by a maximum of \(47.2\%\) in the simulated trials versus a distributed auction-based coordination. We also performed several outdoor hardware trials with a team of three quadcopters that increased the maximum cumulative reward by \(24.5\%\) versus a distributed auction-based coordination.

Keywords

Heterogeneous robotic teams Non-myopic coordination Robotic planning Robotic coordination Robotic fielded hardware trials 

Notes

References

  1. Agrawal, R. (1995). Sample mean based index policies by O(log n) regret for the multi-armed bandit problem. Advances in Applied Probability, 27(4), 1054–1078.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Amato, C., Konidaris, G., Anders, A., Cruz, G., How, J. P., & Kaelbling, L. P. (2016). Policy search for multi-robot coordination under uncertainty. International Journal of Robotics Research, 35(14), 1760–1778.CrossRefGoogle Scholar
  3. Arkin, R. C., & Balch, T. (1998). Cooperative multiagent robotic systems. In Artificial intelligence and mobile robots.Google Scholar
  4. Ayanian, N., Fitch, R., Franchi, A., & Sabattini, L. (2017). Multirobot systems. IEEE Robotics & Automation Magazine, 24(2), 12–16.CrossRefGoogle Scholar
  5. Beck, Z., Teacy, L., Rogers, A., & Jennings, N. R. (2016). Online planning for collaborative search and rescue by heterogeneous robot teams. In Proceedings of the international conference on autonomous agents & multiagent systems (pp. 1024–1033).Google Scholar
  6. Bektas, T. (2006). The multiple traveling salesman problem: An overview of formulations and solution procedures. Omega, 34(3), 209–219.MathSciNetCrossRefGoogle Scholar
  7. Best, G., Cliff, O., Patten, T., Mettu, R. R., & Fitch, R. (2018). Dec-MCTS: Decentralized planning for multi-robot active perception. International Journal of Robotics Research.  https://doi.org/10.1177/0278364918755924.
  8. Best, G., Forrai, M., Mettu, R. R., & Fitch, R. (2018). Planning-aware communication for decentralised multi-robot coordination. In Proceedings of the IEEE International Conference on Robotics and Automation.Google Scholar
  9. Best, G., Huang, S., & Fitch, R. (2018). Decentralised mission monitoring with spatiotemporal optimal stopping. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems.Google Scholar
  10. Best, G., Faigl, J., & Fitch, R. (2018). Online planning for multi-robot active perception with self-organising maps. Autonomous Robots, 42(4), 715–738.CrossRefGoogle Scholar
  11. Boddy, M., & Dean, T. L. (1989). Solving time-dependent planning problems. Providence: Department of Computer Science, Brown University.zbMATHGoogle Scholar
  12. Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., et al. (2012). A survey of Monte Carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1), 1–43.CrossRefGoogle Scholar
  13. Chang, H. S., Fu, M. C., Hu, J., & Marcus, S. I. (2005). An adaptive sampling algorithm for solving Markov decision processes. Operations Research, 53(1), 126–139.MathSciNetCrossRefzbMATHGoogle Scholar
  14. Choi, H., Brunet, L., & How, J. P. (2009). Consensus-based decentralized auctions for robust task allocation. IEEE Transactions on Robotics, 25(4), 912–926.CrossRefGoogle Scholar
  15. Chopra, S., Notarstefano, G., Rice, M., & Egerstedt, M. (2017). Distributed version of the Hungarian method for a multirobot assignment. IEEE Transactions on Robotics, 33(4), 932–947.CrossRefGoogle Scholar
  16. Corah, M., & Michael, N. (2018). Distributed matroid-constrained submodular maximization for multi-robot exploration: Theory and practice. Autonomous Robots.  https://doi.org/10.1007/s10514-018-9778-6.
  17. Deng, Q., Yu, J., & Wang, N. (2013). Cooperative task assignment of multiple heterogeneous unmanned aerial vehicles using a modified genetic algorithm with multi-type genes. Chinese Journal of Aeronautics, 26(5), 1238–1250.CrossRefGoogle Scholar
  18. Desrosiers, J., Dumas, Y., Solomon, M. M., & Soumis, F. (1995). Chapter 2: Time constrained routing and scheduling. In M. O. Ball, T. L. Magnanti, C. L. Monma, & G. L. Nemhauser (Eds.), Handbooks in operations research and management science (Vol. 8, pp. 35–139). ElsevierGoogle Scholar
  19. DJI. Matrice 100 quadcopter for developers. https://www.dji.com/matrice100.
  20. Faigl, J., Kulich, M., & Preucil, L. (2012). Goal assignment using distance cost in multi-robot exploration. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (pp. 3741–3746).Google Scholar
  21. Fukuda, T., Nakagawa, S., Kawauchi, Y., & Buss, M. (1989). Structure decision for self organising robots based on cell structures. In Proceedings of the IEEE international conference on robotics and automation.Google Scholar
  22. Garivier, A., & Moulines, E. (2011). On upper-confidence bound policies for switching bandit problems. In Proceedings of the international conference on algorithmic learning theory (pp. 174–188). Berlin: Springer.Google Scholar
  23. Gerkey, B. P., & Mataric, M. J. (2002). Sold!: Auction methods for multirobot coordination. IEEE Transactions on Robotics and Automation, 18(5), 758–768.CrossRefGoogle Scholar
  24. Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2), 100–107.CrossRefGoogle Scholar
  25. Karp, R.M. (1992). On-line algorithms versus off-line algorithms: How much is it worth to know the future? In IFIP Congress (1) (Vol. 12, pp. 416–429).Google Scholar
  26. Kartal, B., Godoy, J., Karamouzas, I., & Guy, S. J. (2015). Stochastic tree search with useful cycles for patrolling problems. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 1289–1294).Google Scholar
  27. Kocsis, L., & Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In Proceedings of the European conference on machine learning (pp. 282–293).Google Scholar
  28. Labbé, M., & Michaud, F. (2014). Online global loop closure detection for large-scale multi-session graph-based SLAM. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 2661–2666).Google Scholar
  29. Lan, X., & Schwager, M. (2016). Rapidly exploring random cycles: Persistent estimation of spatiotemporal fields with multiple sensing robots. IEEE Transactions on Robotics, 32(5), 1230–1244.CrossRefGoogle Scholar
  30. Liu, Y., & Chopra, N. (2009). Controlled synchronization of robotic manipulators in the task space. In Proceedings of the ASME dynamic systems and control conference (pp. 443–450).Google Scholar
  31. Liu, L., Michael, N., & Shell, D. A. (2015). Communication constrained task allocation with optimized local task swaps. Autonomous Robots, 39(3), 429–444.CrossRefGoogle Scholar
  32. Liu, L., & Shell, D. A. (2012). Large-scale multi-robot task allocation via dynamic partitioning and distribution. Autonomous Robots, 33(3), 291–307.CrossRefGoogle Scholar
  33. Luo, L., Chakraborty, N., & Sycara, K. (2012). Competitive analysis of repeated greedy auction algorithm for online multi-robot task assignment. In Proceedings of the IEEE international conference on robotics and automation (pp. 4792–4799).Google Scholar
  34. Mathew, N., Smith, S., & Waslander, S. (2015). Multirobot rendezvous planning for recharging in persistent tasks. IEEE Transactions on Robotics, 31(1), 128–142.CrossRefGoogle Scholar
  35. Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., & von Stryk, O. (2012). Comprehensive simulation of quadrotor UAVs using ROS and Gazebo. In Proceedings of the international conference on simulation, modeling and programming for autonomous robots (SIMPAR).Google Scholar
  36. Mills-Tettey, G. A., Stentz, A., & Dias, M. B. (2007). The dynamic Hungarian algorithm for the assignment problem with changing costs. Technical Report, Carnegie Mellon University.Google Scholar
  37. Mitrović-Minić, S., Krishnamurti, R., & Laporte, G. (2004). Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows. Transportation Research Part B: Methodological, 38(8), 669–685.CrossRefGoogle Scholar
  38. O. S. R. Foundation. Robot operating system. http://www.ros.org/. Accessed 7 February 2017.
  39. O. S. R. Foundation: Gazebo: Robot simulation made easy. http://gazebosim.org/. Accessed 13 October 2017.
  40. Omidshafiei, S., Agha-Mohammadi, A., Amato, C., Liu, S., How, J. P., & Vian, J. (2017). Decentralized control of multi-robot partially observable Markov decision processes using belief space macro-actions. International Journal of Robotics Research, 36(2), 231–258.CrossRefGoogle Scholar
  41. Petersen, K., Kleiner, A., & von Stryk, O. (2013). Fast task-sequence allocation for heterogeneous robot teams with a human in the loop. In Proceedings of the international conference on intelligent robots and systems (pp. 1648–1655).Google Scholar
  42. Schaefers, L., & Platzner, M. (2015). Distributed Monte Carlo tree search: A novel technique and its application to computer Go. IEEE Transactions on Computational Intelligence and AI in Games, 7(4), 361–374.CrossRefGoogle Scholar
  43. Shin, K. G., & Ramanathan, P. (1994). Real-time computing: A new discipline of computer science and engineering. Proceedings of the IEEE, 82(1), 6–24.CrossRefGoogle Scholar
  44. Smith, A. Github/smithan7. https://github.com/smithan7.
  45. Smith, R. N., Das, E. C., Heidarsson, H., Pereira, A. M., Arrichiello, F., Cetnic, I., et al. (2010). Usc CINAPS builds bridges. IEEE Robotics & Automation Magazine, 17(1), 20–30.CrossRefGoogle Scholar
  46. Tumer, K., & Agogino, A. (2009). Multiagent learning for black box system reward functions. Advances in Complex Systems, 12(04n05), 475–492.CrossRefzbMATHGoogle Scholar
  47. Yoshizoe, K., Kishimoto, A., Kaneko, T., Yoshimoto, H., & Ishikawa, Y. (2011). Scalable distributed Monte-Carlo tree search. In Proceedings of the fourth annual symposium on combinatorial search.Google Scholar
  48. Yu, J., Schwager, M., & Rus, D. (2016). Correlated orienteering problem and its application to persistent monitoring tasks. IEEE Transactions on Robotics, 32(5), 1106–1118.CrossRefGoogle Scholar
  49. Zavlanos, M. M., Spesivtsev, L., & Pappas, G. J. (2008). A distributed auction algorithm for the assignment problem. In Proceedings of the IEEE conference on decision and control (pp. 1212–1217).Google Scholar
  50. Zheng, X., & Koenig, S. (2009). K-swaps: Cooperative negotiation for solving task-allocation problems. In: Proceedings of the international joint conference on artificial intelligence (Vol. 9, pp. 373–378).Google Scholar
  51. Zlot, R., Stentz, A., Dias, M. B., & Thayer, S. (2002). Multi-robot exploration controlled by a market economy. In Proceedings of the IEEE international conference on robotics and automation (Vol. 3, pp. 3016–3023).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Collaborative Robotics and Intelligent Systems (CoRIS) Institute, School of Mechanical Industrial and Manufacturing EngineeringOregon State UniversityCorvallisUSA
  2. 2.School of EngineeringStanford UniversityStanfordUSA

Personalised recommendations