Autonomous Robots

, Volume 43, Issue 6, pp 1489–1504 | Cite as

Passive shared virtual environment for haptic cooperation

  • Ramtin RakhshaEmail author
  • Daniela Constantinescu
  • Yang Shi


For distributed haptic cooperation systems, this paper develops a framework for virtual environments such that the design of the coordinating controllers is decoupled from the network topology and the communication issues. A passive paradigm is introduced for shared virtual object (SVO) with n distributed copies on communications with unreliable data transmission. The n-port passivity of the SVO system is proved and followed by the steady-state analysis. Three-user haptic cooperation experiments validate the theoretical findings.


Haptic cooperation Port-Hamiltonian systems Shared virtual object Wave-based communication n-port passivity 


Supplementary material

Supplementary material 1 (mp4 1887 KB)

Supplementary material 2 (mp4 1976 KB)


  1. Anderson, R., & Spong, M. (1989). Bilateral control of teleoperators with time delay. IEEE Transactions on Automatic Control, 34(5), 494–501.MathSciNetCrossRefGoogle Scholar
  2. Arbabtafti, M., Moghaddam, M., Nahvi, A., Mahvash, M., Richardson, B., & Shirinzadeh, B. (2011). Physics-based haptic simulation of bone machining. IEEE Transactions on Haptics, 4(1), 39–50.CrossRefGoogle Scholar
  3. Bianchini, G., Orlandesi, M., & Prattichizzo, D. (2010). Passivity-based analysis and design of multi-contact haptic systems via lmis. In M. Hosseini Zadeh (eds.), Advances in haptics (pp. 155–170). InTech.
  4. Borghesan, G., Macchelli, A., & Melchiorri, C. (2010). Interconnection and simulation issues in haptics. IEEE Transactions on Haptics, 3(4), 266–279.CrossRefGoogle Scholar
  5. Carignan, C., & Olsson, P. (2004). Cooperative control of virtual objects over the internet using force-reflecting master arms. In 2004 IEEE international conference on robotics and automation, 2004. Proceedings. ICRA ’04. (Vol. 2, pp. 1221–1226).Google Scholar
  6. Cheong, J., Niculescu, S.-I., & Kim, C. (2009). Motion synchronization control of distributed multisubsystems with invariant local natural dynamics. IEEE Transactions on Robotics, 25(2), 382–398.CrossRefGoogle Scholar
  7. Chopra, N., Berestesky, P., & Spong, M. (2008). Bilateral teleoperation over unreliable communication networks. IEEE Transactions on Control Systems Technology, 16(2), 304–313.CrossRefGoogle Scholar
  8. Fotoohi, M., Sirouspour, S., & Capson, D. (2007). Stability and performance analysis of centralized and distributed multi-rate control architectures for multi-user haptic interaction. International Journal of Robotics Research, 26(9), 977–994.CrossRefGoogle Scholar
  9. Hannaford, B., & Ryu, J. H. (2002). Time-domain passivity control of haptic interfaces. IEEE Transactions on Robotics and Automation, 18(1), 1–10.CrossRefGoogle Scholar
  10. Hogan, N. (1985). Impedance control: An approach to manipulation: Parts i–iii. Journal of Dynamic Systems, Measurement, and Control, 107(1), 1–24.zbMATHCrossRefGoogle Scholar
  11. Huang, K., & Lee, D. (2013). Consensus-based peer-to-peer control architecture for multiuser haptic interaction over the internet. IEEE Transactions on Robotics, 29(2), 417–431.CrossRefGoogle Scholar
  12. Kanno, T., & Yokokohji, Y. (2012). Multilateral teleoperation control over time-delayed computer networks using wave variables. In Haptics symposium (HAPTICS), 2012 IEEE (pp. 125–131).Google Scholar
  13. Khademian, B., & Hashtrudi-Zaad, K. (2012). Dual-user teleoperation systems: New multilateral shared control architecture and kinesthetic performance measures. IEEE/ASME Transactions on Mechatronics, 17(5), 895–906.CrossRefGoogle Scholar
  14. Kim, J., Kim, H., Tay, B. K., Muniyandi, M., Srinivasan, M. A., Jordan, J., et al. (2004). Transatlantic touch: A study of haptic collaboration over long distance. Presence: Teleoperators and Virtual Environments, 13(3), 328–337.CrossRefGoogle Scholar
  15. Kim, M., Lee, Y., Lee, Y., & Lee, D. (2017). Haptic rendering and interactive simulation using passive midpoint integration. The International Journal of Robotics Research, 36(12), 1341–1362.CrossRefGoogle Scholar
  16. Kim, Y.-B., Han, S.-H., Kim, S.-J., Kim, E.-J., & Song, C.-G. (2007). Multi-player virtual ping-pong game. In 17th International conference on artificial reality and telexistence (pp. 269–273).Google Scholar
  17. Kottenstette, N., Hall III, J. F., Koutsoukos, X., Antsaklis, P., & Sztipanovits, J. (2011). Digital control of multiple discrete passive plants over networks. International Journal of Systems, Control and Communications, 3(2), 194–228.CrossRefGoogle Scholar
  18. LeBlanc, H., Eyisi, E., Kottenstette, N., Koutsoukos, X., & Sztipanovits, J. (2011). A passivity-based approach to group coordination in multi-agent networks, volume 89 of Lecture Notes in Electrical Engineering (1st ed.). Berlin: Springer.Google Scholar
  19. Lee, D., & Huang, K. (2008). On passive non-iterative variable-step numerical integration of mechanical systems for haptic rendering. In ASME conference proceedings, dynamic systems and control conference (pp. 1147–1154).Google Scholar
  20. Li, J., Tavakoli, M., Mendez, V., & Huang, Q. (2015). Passivity and absolute stability analyses of trilateral haptic collaborative systems. Journal of Intelligent & Robotic Systems, 78(1), 3–20.CrossRefGoogle Scholar
  21. Mendez, V., Tavakoli, M., & Li, J. (2014). A method for passivity analysis of multilateral haptic systems. Advanced Robotics, 28(18), 1205–1219.CrossRefGoogle Scholar
  22. Minogue, J., Gail Jones, M., Broadwell, B., & Oppewall, T. (2006). The impact of haptic augmentation on middle school students ’conceptions of the animal cell’. Virtual Reality, 10(3–4), 293–305.CrossRefGoogle Scholar
  23. Navarro-Lpez, E. M. (2005). Several dissipativity and passivity implications in the linear discrete-time setting. Mathematical Problems in Engineering, 2005(6), 599–616.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Niemeyer, G., & Slotine, J.-J. E. (1991). Stable adaptive teleoperation. IEEE Journal of Oceanic Engineering, 16(1), 152–162.CrossRefGoogle Scholar
  25. Niemeyer, G., & Slotine, J.-J. E. (2004). Telemanipulation with time delays. The International Journal of Robotics Research, 23(9), 873–890.CrossRefGoogle Scholar
  26. Raisbeck, G. (1954). A definition of passive linear networks in terms of time and energy. Journal of Applied Physics, 25(12), 1510–1514.MathSciNetzbMATHCrossRefGoogle Scholar
  27. Rakhsha, R., & Constantinescu, D. (2014). Passive shared virtual environment for distributed haptic cooperation. In Haptics symposium (HAPTICS), 2014 IEEE (pp. 221–226).Google Scholar
  28. Rakhsha, R., & Constantinescu, D. (2015). Average-position coordination for distributed multi-user networked haptic cooperation. Journal of Human Robot Interaction (JHRI), 4(3), 62–75.CrossRefGoogle Scholar
  29. Shahbazi, M., Atashzar, S., Talebi, H., & Patel, R. (2015). Novel cooperative teleoperation framework: Multi-master/single-slave system. IEEE/ASME Transactions on Mechatronics, 20(4), 1668–1679.CrossRefGoogle Scholar
  30. Stramigioli, S., Secchi, C., Van Der Schaft, A., & Fantuzzi, C. (2005). Sampled data systems passivity and discrete port-hamiltonian systems. IEEE Transactions on Robotics, 21(4), 574–587.CrossRefGoogle Scholar
  31. Sugarman, H., Dayan, E., Weisel-Eichler, A., & Tiran, J. (2006). The Jerusalem Telerehabilitation System, a new, low-cost, haptic rehabilitation approach. CyberPsychology & Behavior, 9(2), 178–182.CrossRefGoogle Scholar
  32. van der Schaft, A. (1996). \(l_2\) -gain and passivity techniques in nonlinear control. Berlin: Springer.Google Scholar
  33. Yokokohji, Y., Tsujioka, T., & Yoshikawa, T. (2002). Bilateral control with time-varying delay including communication blackout. In 10th Symposium on haptic interfaces for virtual environment and teleoperator systems (pp. 285–292).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of VictoriaVictoriaCanada

Personalised recommendations