Autonomous Robots

, Volume 43, Issue 6, pp 1419–1434 | Cite as

Map-based localization and loop-closure detection from a moving underwater platform using flow features

  • Naveed MuhammadEmail author
  • Juan Francisco Fuentes-Perez
  • Jeffrey A. Tuhtan
  • Gert Toming
  • Mark Musall
  • Maarja Kruusmaa


In recent years, flow sensing has gotten the attention of the robotics community as an exteroceptive sensing modality, in addition to the conventional underwater sensing modalities of vision and sonar. Earlier works on flow sensing for robotics focus on detection and characterization of objects’ wakes, with the focus slowly evolving towards more complicated tasks such as localization of a stationary underwater platform using flow. In this paper we take this one step ahead, and present map-based localization and loop-closure detection from a continuously moving platform. Map-based localization is performed using flow features inside a particle filter framework, whereas loop-closure detection is based on indexation and comparison of flow features. Both techniques are validated by performing off-line experimentation on real flow data captured in complex flow inside a model fish pass. The results highlight the potential of using flow sensing (in addition to conventional underwater sensing modalities of vision and sonar) for the tasks of underwater robot perception and localization.


Flow sensing Map-based localization Loop-closure detection Underwater robotics 



This research was supported by Estonian Research Council grant IUT-339, and the BONUS FISHVIEW project which was supported by BONUS (Art 185), funded jointly by the EU,Keskkonnainvesteeringute Keskus (Estonia), Forschungszentrum Juellich Beteiligungsgesellschaft GmbH, and the German Federal Ministry for Education and Research (Germany), and the Academy of Finland.

Supplementary material

10514_2018_9797_MOESM1_ESM.avi (32.6 mb)
Supplementary material 1 (avi 33401 KB)


  1. Akanyeti, O., Chambers, L., Jezov, J., Brown, J., Venturelli, R., Kruusmaa, M., et al. (2013). Self-motion effects on hydrodynamic pressure sensing: part I. forward–backward motion. Bioinsperation and Biomimetrics, 8, 1.Google Scholar
  2. Angeli, A., Filliat, D., Doncieux, S., & Meyer, J. A. (2008). Fast and incremental method for loop-closure detection using bags of visual words. IEEE Transactions on Robotics, 24(5), 1027–1037.CrossRefGoogle Scholar
  3. Carreras, M., Ridao, P., Garcia, R., & Nicosevici, T. (2003). Vision-based localization of an underwater robot in a structured environment. In IEEE international conference on robotics and automation, Taipei, Taiwan.Google Scholar
  4. Cha, S. H. (2008). Taxonomy of nominal type histogram distance measures. In American conference on applied mathematics, world scientific and engineering academy and society (WSEAS), pp. 325–330.Google Scholar
  5. Chen, L., Wang, S., McDonald-Maier, K., & Hu, H. (2013). Towards autonomous localization and mapping of AUVs: A survey. International Journal of Intelligent Unmanned Systems, 2, 97–120.CrossRefGoogle Scholar
  6. Chen, N., Tucker, C., Engel, J. M., Yang, Y., Pandya, S., & Liu, C. (2007). Design and characterization of artificial hair sensor for flow sensing with ultrahigh velocity and angular sensivity. Journal of Microelectromechanical Systems, 16, 999–1014.CrossRefGoogle Scholar
  7. Corke, P., Detweiler, C., Dunbabin, M., Hamilton, M., Rus, D., & Vasilescu, I. (2007). Experiments with underwater robot localization and tracking. In IEEE international conference on robotics and automation, Rome, Italy.Google Scholar
  8. Dagamesh, A. M. K., Bruinink, C., Droodendink, H., Wiegerink, R. J., Lammerink, T. S. J., & Krijnen, G. J. M. (2010). Engineering of biomimetic hair-flow sensor arrays dedicated to high-resolution flow field measurements. In IEEE sensors.Google Scholar
  9. DeVries, L., & Paley, D. (2013). Observability-based optimization for flow sensing and control of an underwater vehicle in a uniform flowfield. In American control conference, pp. 1386–1391.Google Scholar
  10. DeVries, L., Lagor, F. D., Lei, H., Tan, X., & Paley, D. A. (2015). Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line. Bioinsperation and Biomimetrics, 10(2), 1.Google Scholar
  11. Eskinja, Z., Fabekovic, Z., & Vukic, Z. (2007). Localization of autonomous underwater vehicles by sonar image processing. In International symposium ELMAR, Zadar, Croatia.Google Scholar
  12. Fernandez, V. I., Maertens, A., Yaul, F. M., Dahl, J., Lang, J. H., & Triantafyllou, M. S. (2011). Lateral-line-inspired sensor arrays for navigation and object identification. Marine Technology Society Journal, 45, 130–146.CrossRefGoogle Scholar
  13. Forouher, D., Hartmann, J., Litza, M., & Maehle, E. (2011). Sonar-based FastSLAM in an underwater environment using walls as features. In 15th international conference on advanced robotics, pp. 588–593.Google Scholar
  14. Gonzalez-Barbosa, J. J. (2004). Vision panoramique pour la robotique mobile: Stéréovisoin et localisation par indexation d’images. Ph.D. thesis, Université Toulouse III.Google Scholar
  15. Gonzalez-Barbosa, J. J., & Lacroix, S. (2002). Rover localization in natural environments by indexing panoramic images. In IEEE international conference on robotics and automation, Washington DC, USA.Google Scholar
  16. Izadi, N., de Boer, M. J., Berenschot, J. W., & Krijnen, G. J. M. (2010). Fabrication of superficial neuromasts inspired capacitive flow sensors. Journal of Micromechanics and Microengineering, 20, 1–9.CrossRefGoogle Scholar
  17. Kamarainen, J. K., Kyrki, V., Ilonen, J., & Kalviainen, H. (2003). Improving similarity measures of histograms using smoothing projections. Pattern Recognition Letters, 24, 2009–2019.CrossRefGoogle Scholar
  18. Klein, A., & Bleckmann, H. (2011). Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals. Beilstein Journal of Nanotechnology, 2, 276–283.CrossRefGoogle Scholar
  19. Kottapalli, A. G. P., Asadina, M., Miao, J. M., Barbastathis, G., & Triantafyllou, M. S. (2012). A flexible liquid crystal polymer MEMS pressure sensor array for fish-like underwater sensing. Smart Materials and Structures, 21, 1.CrossRefGoogle Scholar
  20. Lagor, F. D., DeVries, L. D., Waychoff, K. M., & Paley, D. A. (2013). Bio-inspired flow sensing and control: Autonomous underwater navigation using distributed pressure measurements. In 18th international symposium on unmanned untethered submersible technology, Portsmouth, NH, USA.Google Scholar
  21. Lemaire, T. (2006). Simultaneous localisation and mapping with monocular vision. Ph.D. thesis, Ecole Nationale Supérieure de l’Aéronautique et de l’Espace, France.Google Scholar
  22. Mallios, A., Ribas, D., & Ridao, P. (2009). Localization advances in the unstructured underwater environment. In Proceedings of the 9th Hellenic symposium of oceanography and fishery, pp. 111–116.Google Scholar
  23. Mogdans, J., & Bleckmann, H. (2012). Coping with flow: Behavior, neurophysiology and modeling of the fish lateral line system. Biological Cybernetics, 106(11–12), 627–642.CrossRefGoogle Scholar
  24. Muhammad, N. (2008). Vision based simultaneous localisation and mapping for mobile robots. Masters Thesis, Université de Bourgogne, France.Google Scholar
  25. Muhammad, N., & Lacroix, S. (2011). Loop closure detection using small-sized signatures from 3D lidar data. In IEEE international symposium on safety, security, and rescue robotics, Kyoto, Japan.Google Scholar
  26. Muhammad, N., Strokina, N., Toming, G., Tuhtan, J., Kamarainen, J. K., & Kruusmaa, M. (2015). Flow feature extraction for underwater localization: preliminary results. In IEEE international conference on robotics and automation, Seattle, Washington, USA.Google Scholar
  27. Muhammad, N., Toming, G., Tuhtan, J. A., Musall, M., & Kruusmaa, M. (2017). Underwater map-based localization using flow features. Autonomous Robots, 41, 417–436.CrossRefGoogle Scholar
  28. Palomeras, N., Nagappa, S., Ribas, D., Gracias, N., & Carreras, M. (2013). Vision-based localization and mapping system for AUV intervention. In MTS/IEEE OCEANS, Bergen.Google Scholar
  29. Paull, L., Saeedi, S., Seto, M., & Li, H. (2014). AUV navigation and localization: A review. IEEE Jounal of Ocean Engineering, 39, 131–149.CrossRefGoogle Scholar
  30. Peleshanko, S., Julian, M. D., Ornatska, M., McConney, M. E., LeMieux, M. C., Chen, N., et al. (2007). Hydrogel-encapsulated microfabricated hair mimicking fish cupula neuromast. Advanced Materials, 19, 2903–2909.CrossRefGoogle Scholar
  31. Qualtieri, A., Rizzi, F., Epifani, G., Ernits, A., Kruusmaa, M., & Vittorio, M. D. (2012). Parylene-coated bioinspired artificial hair cell for liquid flow sensing. Microelectronic Engineering, 98, 516–519.CrossRefGoogle Scholar
  32. Salumae, T., & Kruusmaa, M. (2013). Flow-relative control of an underwater robot. Proceedings of the Royal Society A, 469, 1–19.CrossRefGoogle Scholar
  33. Silicon-Microstructures. (2013). SM5420C-030-A-P-S. 1701 McCarthy Blvd, Milpitas CA 95035, USA.Google Scholar
  34. Thrun, S., & Montemerlo, M. (2006). The GraphSLAM algorithm with applications to large-scale mapping of urban structures. The International Journal of Robotics Research, 25(5–6), 403–429.CrossRefGoogle Scholar
  35. Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust monte carlo lozalization for mobile robots. Artiicial Intelligence, 128, 99–141.CrossRefzbMATHGoogle Scholar
  36. Venturelli, R., Akanyeti, O., Visentin, F., Jezov, J., Chambers, L., Toming, G., et al. (2012). Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows. Bioinsperation and Biomimetrics, 7(3), 036,004.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Naveed Muhammad
    • 1
    Email author
  • Juan Francisco Fuentes-Perez
    • 1
  • Jeffrey A. Tuhtan
    • 1
  • Gert Toming
    • 1
  • Mark Musall
    • 2
  • Maarja Kruusmaa
    • 1
  1. 1.Center for BioroboticsTallinn University of TechnologyTallinnEstonia
  2. 2.Institute of Water and River Basin ManagementKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations