Autonomous Robots

, Volume 43, Issue 2, pp 503–521 | Cite as

Improving slip prediction on Mars using thermal inertia measurements

  • Christopher CunninghamEmail author
  • Issa A. Nesnas
  • William L. Whittaker
Part of the following topical collections:
  1. Special Issue on Robotics: Science and Systems


Rovers operating on Mars have been delayed, diverted, and trapped by loose granular materials. Vision-based mobility prediction cannot reliably distinguish hazardous sand from safe sand based on appearance alone. Unlike surface appearance, the thermal inertia of terrain is directly correlated to the same geophysical properties that control slip. This paper presents a quantitative analysis that shows improvement in rover slip prediction when considering thermal inertia based on data from the Curiosity rover. Thermal inertia is estimated for each slip measurement in sand using both on-board and orbital instruments. Slip models are learned using a mixture of experts approach where the experts are identified using thermal inertia. Two-expert models are compared to a single-expert, vision-only model to show that slip predictions are improved by separating high-slip, low thermal inertia sand from low-slip, high thermal inertia sand. Simulated experiments are also presented to show that thermal inertia has the potential to identify sand even when it is beneath a thin layer of surface duricrust. These results support the hypothesis that the consideration of thermal inertia improves mobility estimates for rovers on Mars.


Space robotics Traversability prediction Terramechanics Computer vision 



The authors wish to thank Mark Maimone, Sylvain Piqueux, Masahiro Ono, Jeng Yen, and Ray Arvidson for their help and advice. We thank the PDS Geosciences Node for providing image and thermal data. We also thank the Mars Science Laboratory team for providing the slip data that enabled this investigation. Portions of this research were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by a NASA Space Technology Research Fellowship (Grant No. NNX13AL77H).


  1. Angelova, A., Matthies, L., Helmick, D., & Perona, P. (2006). Slip prediction using visual information. In Proceedings of robotics: Science and systems, Philadelphia.Google Scholar
  2. Angelova, A., Matthies, L., Helmick, D., & Perona, P. (2007). Learning and prediction of slip from visual information. Journal of Field Robotics, 24(3), 205–231.CrossRefGoogle Scholar
  3. Arvidson, R. E., Bell, J. F., Bellutta, P., Cabrol, N. A., Catalano, J. G., Cohen, J., et al. (2010). Spirit mars rover mission: Overview and selected results from the northern home plate winter haven to the side of scamander crater. Journal of Geophysical Research: Planets, 115(9), 1–19.Google Scholar
  4. Arvidson, R. E., Iagnemma, K. D., Maimone, M., Fraeman, A. A., Zhou, F., Heverly, M. C., et al. (2016). Mars science laboratory curiosity rover megaripple crossings up to sol 710 in gale crater. Journal of Field Robotics, 34, 495–518.CrossRefGoogle Scholar
  5. Bandfield, J. L., Song, E., Hayne, P. O., Brand, B. D., Ghent, R. R., Vasavada, A. R., et al. (2014). Lunar cold spots: Granular flow features and extensive insulating materials surrounding young craters. Icarus, 231, 221–231.CrossRefGoogle Scholar
  6. Bishop, C. M. (2006). Pattern recognition and machine learning. Information science and statistics. Berlin, Heidelberg: Springer-Verlag.Google Scholar
  7. Brooks, C. A., & Iagnemma, K. (2012). Self-supervised terrain classification for planetary surface exploration rovers. Journal of Field Robotics, 29(3), 445–468.CrossRefGoogle Scholar
  8. Carrier, W. D. (2005). The four things you need to know about the geotechnical properties of lunar soil. Lakeland: Lunar Geotechnical Institute.Google Scholar
  9. Chhaniyara, S., Brunskill, C., Yeomans, B., Matthews, M. C., Saaj, C., Ransom, S., et al. (2012). Terrain trafficability analysis and soil mechanical property identification for planetary rovers: A survey. Journal of Terramechanics, 49(2), 115–128.CrossRefGoogle Scholar
  10. Christensen, P. R., Fergason, R. L., Edwards, C. S., & Hill, J. (2013). THEMIS-derived thermal inertia mosaic of mars: Product description and science results. In 44th lunar and planetary science conference (p. Abstract #2822).Google Scholar
  11. Christensen, P. R., Jakosky, B. M., Kieffer, H. H., Malin, M. C., Mcsween, H. Y., Nealson, K., et al. (2001). The thermal emission system (THEMIS) for the Mars 2001 Odyssey mission. Space Science Reviews, 110(85–130), 2004.Google Scholar
  12. Cunningham, C., Nesnas, I., & Whittaker, W. L. (2015a). Terrain traversability prediction by imaging thermal transients. In IEEE conference on robotics and automation (pp. 3947–3952). Seattle.Google Scholar
  13. Cunningham, C., Whittaker, W. L., & Nesnas, I. (2016). Detecting loose regolith in lunar craters using thermal imaging. In ASCE conference on earth and space.Google Scholar
  14. Cunningham, C. Ono, M., Nesnas, I., Yen, J., & Whittaker, W. L. (2017). Locally-adaptive slip prediction for planetary rovers using Gaussian processes. In IEEE conference on robotics and automation.Google Scholar
  15. Cunningham, C. Wong, U., Peterson, K. M., & Whittaker, W. L. R. (2015b). Predicting terrain traversability from thermal diffusivity. In Field and service robotics (Vol. 105, pp. 61–74), Brisbane, Australia.Google Scholar
  16. Fergason, R. L., Christensen, P. R., Bell, J. F., Golombek, M. P., Herkenhoff, K. E., & Kieffer, H. H. (2006a). Physical properties of the mars exploration rover landing sites as inferred from mini-TES-derived thermal inertia. Journal of Geophysical Research: Planets, 111(2), E02S21.Google Scholar
  17. Fergason, R. L., Christensen, P. R., Golombek, M. P., & Parker, T. J. (2012). Surface properties of the mars science laboratory candidate landing sites: Characterization from orbit and predictions. Space Science Reviews, 170(1–4), 739–773.CrossRefGoogle Scholar
  18. Fergason, R. L., Christensen, P. R., & Kieffer, H. H. (2006b). High-resolution thermal inertia derived from the thermal emission imaging system (THEMIS): Thermal model and applications. Journal of Geophysical Research: Planets, 111(12), 1–22.Google Scholar
  19. Goldberg, S. B., Maimone, M. W., & Matthies, L. (2002). Stereo vision and rover navigation software for planetary exploration. IEEE Aerospace Conference Proceedings, 5, 2025–2036.Google Scholar
  20. Golombek, M., Grant, J., Kipp, D., Vasavada, A., Kirk, R., Fergason, R., et al. (2012). Selection of the mars science laboratory landing site. Space Science Reviews, 170(1–4), 641–737.CrossRefGoogle Scholar
  21. Grotzinger, J. P., Crisp, J., Vasavada, A. R., Anderson, R. C., Baker, C. J., Barry, R., et al. (2012). Mars science laboratory mission and science investigation. Space Science Reviews, 170(1–4), 5–56.CrossRefGoogle Scholar
  22. Halatci, I., Brooks, C. A., & Iagnemma, K. (2007). Terrain classification and classifier fusion for planetary exploration rovers. In IEEE aerospace conference proceedings (pp. 1–11). IEEE.Google Scholar
  23. Hamilton, V. E., Vasavada, A. R., Sebastiiann, E., Juarez, M. D. L. T., Ramos, M., Armiens, C., et al. (2014). Observations and preliminary science results from the first 100 sols of MSL rover environmental monitoring station ground temperature sensor measurements at gale crater. Journal of Geophysical Research: Planets, 119(4), 745–770.Google Scholar
  24. Heverly, M., Matthews, J., Lin, J., Fuller, D., Maimone, M., Baesaidecki, J., et al. (2013). Traverse performance characterization for the mars science laboratory rover. Journal of Field Robotics, 30(6), 835–846.CrossRefGoogle Scholar
  25. Ho, K., Peynot, T., & Sukkarieh, S. (2016). Nonparametric traversability estimation in partially occluded and deformable terrain. Journal of Field Robotics, 33(8), 1131–1158.CrossRefGoogle Scholar
  26. Igwe, O., Sassa, K., & Wang, F. (2007). The influence of grading on the shear strength of loose sands in stress-controlled ring shear tests. Landslides, 4(1), 43–51.CrossRefGoogle Scholar
  27. Jakosky, B. M. (1986). On the thermal properties of martian fines. Icarus, 66(1), 117–124.CrossRefGoogle Scholar
  28. Kieffer, H. H. (2013). Thermal model for analysis of mars infrared mapping. Journal of Geophysical Research: Planets, 118(3), 451–470.Google Scholar
  29. Lade, P. V., & Overton, D. D. (1989). Cementation effects in frictional materials. Journal of Geotechnical Engineering, 115(10), 1373–1387.CrossRefGoogle Scholar
  30. Lemmon, M. T. (2014). The Mars science laboratory optical depth record. In LPI contributions (pp. 1–2).Google Scholar
  31. Lemmon, M. T., Wolff, M. J., Bell, J. F., Smith, M. D., Cantor, B. A., & Smith, P. H. (2015). Dust aerosol, clouds, and the atmospheric optical depth record over 5 mars years of the mars exploration rover mission. Icarus, 251, 96–111.CrossRefGoogle Scholar
  32. Maimone, M. (2016). No a Martian vision: Impact of JPL robotics vision and mobility research on the mars rovers. In JPL robotics section senior lecture series.Google Scholar
  33. Maimone, M., Cheng, Y., & Matthies, L. (2007). Two years of visual odometry on the mars exploration rovers. Journal of Field Robotics, 24(3), 169–186.CrossRefGoogle Scholar
  34. Martínez, G. M., Rennõ, N., Fischer, E., Borlina, C. S., Hallet, B., De La Torre Juárez, M., et al. (2014). Surface energy budget and thermal inertia at gale crater: Calculations from ground-based measurements. Journal of Geophysical Research: Planets, 119(8), 1822–1838.Google Scholar
  35. Mellon, M. T., Jakosky, B. M., Kieffer, H. H., & Christensen, P. R. (2000). High-resolution thermal inertia mapping from the mars global surveyor thermal emission spectrometer. Icarus, 148(2), 437–455.CrossRefGoogle Scholar
  36. Morgan, J. K. (1999). Numerical simulations of granular shear zones using the distinct element method 2. Effects of particle size distribution and interparticle friction on mechanical behavior. Journal of Geophysical Research, 104(B2), 2721–2732.CrossRefGoogle Scholar
  37. Otsu, K., Ono, M., Fuchs, T. J., Baldwin, I., & Kubota, T. (2016). Autonomous terrain classification with co- and self-training approach. IEEE Robotics and Automation Letters, 1(2), 814–819.CrossRefGoogle Scholar
  38. Parsons, A. J., & Abrahams, A. D. (2009). Geomorphology of desert environments. ISBN 9781402057182.Google Scholar
  39. Perko, H. A., Nelson, J. D., & Green, J. R. (2006). Mars soil mechanical properties and suitability of mars soil simulants. Journal of Aerospace Engineering, 19(July), 169–176.CrossRefGoogle Scholar
  40. Piqueux, S., & Christensen, P. R. (2009a). A model of thermal conductivity for planetary soils: 2. Theory for unconsolidated soils. Journal of Geophysical Research: Planets, 114(9), 1–20.Google Scholar
  41. Piqueux, S., & Christensen, P. R. (2009b). A model of thermal conductivity for planetary soils: 2. Theory for cemented soils. Journal of Geophysical Research: Planets, 114(9), 1–20.Google Scholar
  42. Presley, M. A., & Christensen, P. R. (2010). Thermal conductivity measurements of particulate materials: 5. Effect of bulk density and particle shape. Journal of Geophysical Research: Planets, 115(E7), 1–13.Google Scholar
  43. Presley, M. A., & Christensen, P. R. (1997). Thermal conductivity measurements of particulate materials 2. Results. Journal of Geophysical Research: Planets, 102(E3), 6551–6566.CrossRefGoogle Scholar
  44. Price, J. C. (1977). Thermal inertia mapping: A new view of the earth. Journal of Geophysical Research, 82(18), 2582.CrossRefGoogle Scholar
  45. Putzig, N. E. (2006). Thermal inertia and surface heterogeneity on mars. Ph.D. thesis, University of Colorado.Google Scholar
  46. Putzig, N. E., & Mellon, M. T. (2007). Apparent thermal inertia and the surface heterogeneity of mars. Icarus, 191(1), 68–94.CrossRefGoogle Scholar
  47. Putzig, N. E., Mellon, M. T., Jakosky, B. M., Pelkey, S. M., Martínez-Alonso, S., Hynek, B. M., et al. (2004). Mars thermal inertia from THEMIS data. Lunar and Planetary Science Conference, 35, 1863.Google Scholar
  48. Rasmussen, C. E., & Ghahramani, Z. (2002). Infinite mixtures of gaussian process experts. Advances in Neural Information Processing Systems, 2, 881–888.CrossRefGoogle Scholar
  49. Rodriguez-Manfredi, J. A., Gomez-Gomez, F., Gomez-Elvira, J., Navarro, S., Prieto-Ballesteros, O., Sebastian, E., et al. (2017). Atmospheric science with the mars 2020 rover. In The sixth international workshop on the mars atmosphere (p. 4408).Google Scholar
  50. Rothrock, B., Papon, J., Kennedy, R., Ono, M., Heverly, M., & Cunningham, C. (2016). SPOC: Deep learning-based terrain classification for mars rover missions. In AIAA: Space.Google Scholar
  51. Sebastián, E., Armiens, C., Gómez-Elvira, J., Zorzano, M. P., Martinez-Frias, J., Esteban, B., et al. (2010). The rover environmental monitoring station ground temperature sensor: A pyrometer for measuring ground temperature on mars. Sensors, 10(10), 9211–9231.CrossRefGoogle Scholar
  52. Squyres, S. W., Arvidson, R. E., Bollen, D., Bell, J. F., Bruckner, J., Cabrol, N. A., et al. (2006). Overview of the opportunity mars exploration rover mission to meridiani planum: Eagle crater to purgatory ripple. Journal of Geophysical Research: Planets, 111(12), 1–19.Google Scholar
  53. Vasavada, A. R., Bandfield, J. L., Greenhagen, B. T., Hayne, P. O., Siegler, M. A., Williams, J. P., et al. (2012). Lunar equatorial surface temperatures and regolith properties from the diviner lunar radiometer experiment. Journal of Geophysical Research: Planets, 117(4), 1–12.Google Scholar
  54. Wang, L. C., Long, W., & Gao, S. J. (2014). Effect of moisture content, void ratio and compacted sand content on the shear strength of remolded unsaturated clay. Electronic Journal of Geotechnical Engineering, 19(Q), 4413–4426.Google Scholar
  55. Wissa, A. E. Z., Ladd, C. C., & Lambe, T. W. (1964). Effective stress strength parameters of stabilized soils. In MIT Department of Civil Engineering.Google Scholar
  56. Wong, J. Y. (2012). Predicting the performances of rigid rover wheels on extraterrestrial surfaces based on test results obtained on earth. Journal of Terramechanics, 49(1), 49–61.CrossRefGoogle Scholar
  57. Yuksel, S. E., Wilson, J. N., & Gader, P. D. (2012). Twenty years of mixture of experts. IEEE Transactions on Neural Networks and Learning Systems, 23(8), 1177–1193.CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply  2018

Authors and Affiliations

  1. 1.Robotics InstituteCarnegie Mellon UniversityPittsburghUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations