Advertisement

Viewpoint invariant semantic object and scene categorization with RGB-D sensors

  • Hasan F. M. Zaki
  • Faisal Shafait
  • Ajmal Mian
Article

Abstract

Understanding the semantics of objects and scenes using multi-modal RGB-D sensors serves many robotics applications. Key challenges for accurate RGB-D image recognition are the scarcity of training data, variations due to viewpoint changes and the heterogeneous nature of the data. We address these problems and propose a generic deep learning framework based on a pre-trained convolutional neural network, as a feature extractor for both the colour and depth channels. We propose a rich multi-scale feature representation, referred to as convolutional hypercube pyramid (HP-CNN), that is able to encode discriminative information from the convolutional tensors at different levels of detail. We also present a technique to fuse the proposed HP-CNN with the activations of fully connected neurons based on an extreme learning machine classifier in a late fusion scheme which leads to a highly discriminative and compact representation. To further improve performance, we devise HP-CNN-T which is a view-invariant descriptor extracted from a multi-view 3D object pose (M3DOP) model. M3DOP is learned from over 140,000 RGB-D images that are synthetically generated by rendering CAD models from different viewpoints. Extensive evaluations on four RGB-D object and scene recognition datasets demonstrate that our HP-CNN and HP-CNN-T consistently outperforms state-of-the-art methods for several recognition tasks by a significant margin.

Keywords

Object categorization Scene recognition RGB-D image Multi-modal deep learning 

Notes

Acknowledgements

Funding was provided by Australian Research Council (Grant No. Australian Research Council (ARC) Discovery Project DP160101458).

References

  1. Angeli, A., Filliat, D., Doncieux, S., & Meyer, J. A. (2008). Fast and incremental method for loop-closure detection using bags of visual words. IEEE Transactions on Robotics, 24(5), 1027–1037.CrossRefGoogle Scholar
  2. Asif, U., Bennamoun, M., & Sohel, F. (2015). Discriminative feature learning for efficient rgb-d object recognition. In IEEE/RSJ international conference on intelligent robots and systems (IROS), 2015 (pp. 272–279). IEEE.Google Scholar
  3. Asif, U., Bennamoun, M., & Sohel, F. (2015). Efficient RGB-D object categorization using cascaded ensembles of randomized decision trees. In Proceedings of ICRA, (pp. 1295–1302).Google Scholar
  4. Azizpour, H., Razavian, A. S., Sullivan, J., Maki, A., & Carlsson, S. (2016). Factors of transferability for a generic convnet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(9), 1790–1802.  https://doi.org/10.1109/TPAMI.2015.2500224.CrossRefGoogle Scholar
  5. Bai, J., Wu, Y., Zhang, J., & Chen, F. (2015). Subset based deep learning for RGB-D object recognition. Neurocomputing, 165, 280–292.CrossRefGoogle Scholar
  6. Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends® in Machine Learning, 2(1), 1–127.CrossRefMATHGoogle Scholar
  7. Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. Advances in Neural Information Processing Systems, 19, 153.Google Scholar
  8. Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE PAMI, 35(8), 1798–1828.CrossRefGoogle Scholar
  9. Blum, M., Springenberg, J.T., Wulfing, J., & Riedmiller, M. (2012). A learned feature descriptor for object recognition in RGB-D data. In Proceedings of ICRA (pp. 1298–1303).Google Scholar
  10. Bo, L., Ren, X., & Fox, D. (2011). Depth kernel descriptors for object recognition. In Proceedings of IROS (pp. 821–826).Google Scholar
  11. Bo, L., Ren, X., & Fox, D. (2012). Unsupervised feature learning for rgb-d based object recognition. In Proceedings of ISER.Google Scholar
  12. Browatzki, B., Fischer, J., Graf, B., Bulthoff, H., & Wallraven, C. (2011). Going into depth: Evaluating 2D and 3D cues for object classification on a new, large-scale object dataset. In IEEE international conference on computer vision workshops (ICCVW) (pp. 1189–1195).Google Scholar
  13. Chatfield, K., Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Return of the devil in the details: Delving deep into convolutional nets. In Proceedings of BMVC. arXiv preprint arXiv:1405.3531.
  14. Cheng, Y., Zhao, X., Huang, K., & Tan, T. (2014). Semi-supervised learning for RGB-D object recognition. In Proceedings of ICPR (pp. 2377–2382).Google Scholar
  15. Coates, A., Ng, A., & Lee, H. (2011). An analysis of single-layer networks in unsupervised feature learning. In Proceedings of AISTATS (pp. 215–223).Google Scholar
  16. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In IEEE conference on computer vision and pattern recognition, 2009, CVPR 2009 (pp. 248–255). IEEE.Google Scholar
  17. Gupta, S., Girshick, R., Arbeláez, P., & Malik, J. (2014). Learning rich features from RGB-D images for object detection and segmentation. In Proceedings of ECCV (pp. 345–360).Google Scholar
  18. Hariharan, B., Arbeláez, P., Girshick, R., & Malik, J. (2015). Hypercolumns for object segmentation and fine-grained localization. In Proceedings of CVPR.Google Scholar
  19. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1904–1916.CrossRefGoogle Scholar
  20. Hinton, G., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527–1554.MathSciNetCrossRefMATHGoogle Scholar
  21. Hinton, G.E. (2012). A practical guide to training restricted boltzmann machines. In Neural networks: Tricks of the trade (pp. 599–619). Springer.Google Scholar
  22. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1), 489–501.CrossRefGoogle Scholar
  23. Huang, G. B., Zhou, H., Ding, X., & Zhang, R. (2012). Extreme learning machine for regression and multiclass classification. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 42(2), 513–529.CrossRefGoogle Scholar
  24. Jhuo, I.H., Gao, S., Zhuang, L., Lee, D., & Ma, Y. (2014). Unsupervised feature learning for RGB-D image classification. In Proceedings of ACCV (pp. 276–289).Google Scholar
  25. Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. In Proceedings of NIPS (pp. 1097–1105).Google Scholar
  26. Lai, K., Bo, L., Ren, X., & Fox, D. (2011). A large-scale hierarchical multi-view RGB-D object dataset. In Proceedings of ICRA (pp. 1817–1824).Google Scholar
  27. Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In proceedings of CVPR (Vol. 2, pp. 2169–2178).Google Scholar
  28. Le, Q.V., Karpenko, A., Ngiam, J., & Ng, A.Y. (2011). Ica with reconstruction cost for efficient overcomplete feature learning. In Advances in neural information processing systems (pp. 1017–1025).Google Scholar
  29. Liao, Y., Kodagoda, S., Wang, Y., Shi, L., & Liu, Y. (2016). Understand scene categories by objects: A semantic regularized scene classifier using convolutional neural networks. In 2016 IEEE international conference on robotics and automation (ICRA) (pp. 2318–2325). IEEE.Google Scholar
  30. Liu, L., Shen, C., & van den Hengel, A. (2015). The treasure beneath convolutional layers: Cross convolutional layer pooling for image classification. In Proceedings of CVPR.Google Scholar
  31. Liu, W., Ji, R., & Li, S. (2015). Towards 3D object detection with bimodal deep boltzmann machines over RGBD imagery. In Proceedings of CVPR.Google Scholar
  32. Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.CrossRefGoogle Scholar
  33. Lowry, S., Snderhauf, N., Newman, P., Leonard, J. J., Cox, D., Corke, P., et al. (2016). Visual place recognition: A survey. IEEE Transactions on Robotics, 32(1), 1–19.  https://doi.org/10.1109/TRO.2015.2496823.CrossRefGoogle Scholar
  34. Phong, B. T. (1975). Illumination for computer generated pictures. Communications of the ACM, 18(6), 311–317.CrossRefGoogle Scholar
  35. Razavian, A.S., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-the-shelf: An astounding baseline for recognition. In Proceedings of computer vision and pattern recognition workshops (CVPRW) (pp. 512–519).Google Scholar
  36. Schwarz, M., Schulz, H., & Behnke, S. (2015). RGB-D object recognition and pose estimation based on pre-trained convolutional neural network features. In Proceedings of ICRA.Google Scholar
  37. Silberman, N., & Fergus, R. (2011). Indoor scene segmentation using a structured light sensor. In 2011 IEEE international conference on computer vision workshops (ICCV workshops) (pp. 601–608). IEEEGoogle Scholar
  38. Socher, R., Huval, B., Bath, B., Manning, C.D., & Ng, A. (2012). Convolutional-recursive deep learning for 3D object classification. In Proceedings of NIPS (pp. 665–673).Google Scholar
  39. Song, S., Lichtenberg, S.P., & Xiao, J. (2015). Sun rgb-d: A rgb-d scene understanding benchmark suite. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 567–576).Google Scholar
  40. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 1929–1958.MathSciNetMATHGoogle Scholar
  41. Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, E. (2015). Multi-view convolutional neural networks for 3d shape recognition. In Proceedings of the IEEE international conference on computer vision (pp. 945–953).Google Scholar
  42. Torralba, A., Murphy, K.P., Freeman, W.T., & Rubin, M.A. (2003). Context-based vision system for place and object recognition. In Proceedings of ninth IEEE international conference on Computer vision, 2003 (pp. 273–280). IEEE.Google Scholar
  43. Uzair, M., Mahmood, A., & Mian, A. (2015). Hyperspectral face recognition with spatiospectral information fusion and pls regression. IEEE Transactions on Image Processing, 24, 1127–1137.  https://doi.org/10.1109/TIP.2015.2393057.MathSciNetCrossRefGoogle Scholar
  44. Vedaldi, A., & Fulkerson, B. (2010). Vlfeat: An open and portable library of computer vision algorithms. In Proceedings of the international conference on multimedia (pp. 1469–1472). ACM.Google Scholar
  45. Vedaldi, A., & Lenc, K. (2014). Matconvnet-convolutional neural networks for matlab. arXiv preprint arXiv:1412.4564.
  46. Welsh, T., Ashikhmin, M., & Mueller, K. (2002). Transferring color to greyscale images. ACM Transactions on Graphics, 21(3), 277–280.  https://doi.org/10.1145/566654.566576.CrossRefGoogle Scholar
  47. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015). 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1912–1920).Google Scholar
  48. Yang, J., Yu, K., Gong, Y., & Huang, T. (2009). Linear spatial pyramid matching using sparse coding for image classification. In IEEE conference on computer vision and pattern recognition, 2009, CVPR 2009 (pp. 1794–1801). IEEEGoogle Scholar
  49. Yang, S., & Ramanan, D. (2015). Multi-scale recognition with DAG-CNNS. In Proceedings of the IEEE international conference on computer vision (pp. 1215–1223).Google Scholar
  50. Zaki, H.F., Shafait, F., & Mian, A. (2015). Localized deep extreme learning machines for efficient RGB-D object recognition. In Proceedings of digital image computing: Techniques and applications (DICTA) (pp. 1–8).  https://doi.org/10.1109/DICTA.2015.7371280.
  51. Zaki, H.F.M., Shafait, F., & Mian, A. (2016). Convolutional hypercube pyramid for accurate RGB-D object category and instance recognition. In Proceedings of ICRA (to appear).Google Scholar
  52. Zeiler, M.D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer vision—ECCV 2014 (pp. 818–833). Springer.Google Scholar
  53. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., & Oliva, A. (2014). Learning deep features for scene recognition using places database. In Proceedings of NIPS (pp. 487–495).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechatronics EngineeringInternational Islamic University MalaysiaKuala LumpurMalaysia
  2. 2.National University of Sciences and TechnologyIslamabadPakistan
  3. 3.School of Computer Science and Software EngineeringThe University of Western AustraliaCrawleyAustralia

Personalised recommendations