Advertisement

Autonomous Robots

, Volume 42, Issue 7, pp 1427–1442 | Cite as

Routing autonomous vehicles in congested transportation networks: structural properties and coordination algorithms

  • Federico Rossi
  • Rick Zhang
  • Yousef Hindy
  • Marco Pavone
Article
Part of the following topical collections:
  1. Special Issue on Robotics: Science and Systems 2016

Abstract

This paper considers the problem of routing and rebalancing a shared fleet of autonomous (i.e., self-driving) vehicles providing on-demand mobility within a capacitated transportation network, where congestion might disrupt throughput. We model the problem within a network flow framework and show that under relatively mild assumptions the rebalancing vehicles, if properly coordinated, do not lead to an increase in congestion (in stark contrast to common belief). From an algorithmic standpoint, such theoretical insight suggests that the problems of routing customers and rebalancing vehicles can be decoupled, which leads to a computationally-efficient routing and rebalancing algorithm for the autonomous vehicles. Numerical experiments and case studies corroborate our theoretical insights and show that the proposed algorithm outperforms state-of-the-art point-to-point methods by avoiding excess congestion on the road. Collectively, this paper provides a rigorous approach to the problem of congestion-aware, system-wide coordination of autonomously driving vehicles, and to the characterization of the sustainability of such robotic systems.

Keywords

Self-driving cars Intelligent transportation systems Vehicle routing Autonomous systems 

Notes

Acknowledgements

The authors would like to thank Zachary Sunberg for his analysis on the road network symmetry of U.S. cities.

Supplementary material

Supplementary material 1 (mp4 10550 KB)

References

  1. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms and applications. Upper Saddle River: Prentice Hall.zbMATHGoogle Scholar
  2. Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., & Nagel, K. (2009). MATSim-t: Architecture and simulation times. In A. Ana Bazzan & F. Klügl (Eds.), Multi-agent systems for traffic and transportation engineering (pp. 57–78).Google Scholar
  3. Barnard, M. (2016). Autonomous cars likely to increase congestion. Available at http://cleantechnica.com/2016/01/17/autonomous-cars-likely-increase-congestion. Accessed 15 Feb 2017.
  4. Berbeglia, G., Cordeau, J. F., & Laporte, G. (2010). Dynamic pickup and delivery problems. European Journal of Operational Research, 202(1), 8–15.CrossRefzbMATHGoogle Scholar
  5. Bureau of Public Roads. (1964). Traffic assignment manual. Technical Report, U.S. Department of Commerce, Urban Planning Division.Google Scholar
  6. Cornuejols, G., Nemhauser, G. L., & Wolsey, L. A. (1990). The uncapacitated facility location problem. In P. B. Mirchandani & R. L. Francis (Eds.), Discrete location theory (pp. 119–171). Hoboken: Wiley.Google Scholar
  7. Daganzo, C. F. (1994). The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation Research Part B: Methodological, 28(4), 269–287.CrossRefGoogle Scholar
  8. Even, S., Itai, A., & Shamir, A. (1976). On the complexity of timetable and multicommodity flow problems. SIAM Journal on Computing, 5(4), 691–703.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Fagnant, D. J., & Kockelman, K. M. (2014). The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios. Transportation Research Part C: Emerging Technologies, 40, 1–13.CrossRefGoogle Scholar
  10. Ford, L. R., & Fulkerson, D. R. (1962). Flows in networks. Princeton: Princeton University Press.zbMATHGoogle Scholar
  11. Goldberg, A., Oldham, J., Plotkin, S., & Stein, C. (1998). An implementation of a combinatorial approximation algorithm for minimum-cost multicommodity flow. In International conference on integer programming and combinatorial optimization.Google Scholar
  12. Goldberg, A. V., Tardos, E., & Tarjan, R. E. (1990). Network flow algorithms. In B. H. Korte (Ed.), Algorithms and combinatorics. Volume 9: paths, flows, and VLSI-layout (pp. 101–161). Springer-Verlag.Google Scholar
  13. Haklay, M., & Weber, P. (2008). OpenStreetMap: User-generated street maps. IEEE Pervasive Computing, 7(4), 12–18.CrossRefGoogle Scholar
  14. Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems, Science, & Cybernetics, 4(2), 100–107.CrossRefGoogle Scholar
  15. Horni, A., Nagel, K., & Axhausen, K. W. (Eds.). (2016). The multi-agent transport simulation MATSim. London: Ubiquity Press.Google Scholar
  16. Janson, B. N. (1991). Dynamic traffic assignment for urban road networks. Transportation Research Part B: Methodological, 25(2–3), 143–161.CrossRefGoogle Scholar
  17. Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. Combinatorica, 4(4), 373–395.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Karp, R. M. (1975). On the computational complexity of combinatorial problems. Networks, 5(1), 45–68.CrossRefzbMATHGoogle Scholar
  19. Kerner, B. S. (2009). Introduction to modern traffic flow theory and control: The long road to three-phase traffic theory (1st ed.). Berlin: Springer.CrossRefzbMATHGoogle Scholar
  20. Le, T., Kovács, P., Walton, N., Vu, H. L., Andrew, L. L. H., & Hoogendoorn, S. S. P. (2015). Decentralized signal control for urban road networks. Transportation Research Part C: Emerging Technologies, 58, 431–450.CrossRefGoogle Scholar
  21. Leighton, T., Makedon, F., Plotkin, S., Stein, C., Tardos, É., & Tragoudas, S. (1995). Fast approximation algorithms for multicommodity flow problems. Journal of Computer and System Sciences, 50(2), 228–243.MathSciNetCrossRefzbMATHGoogle Scholar
  22. Levin, M. W., Kockelman, K. M., Boyles, S. D., & Li, T. (2017). A general framework for modeling shared autonomous vehicles with dynamic network-loading and dynamic ride-sharing application. Computers, Environment and Urban Systems, 64, 373–383.CrossRefGoogle Scholar
  23. Lighthill, M. J., & Whitham, G. B. (1955). On kinematic waves. II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 229(1178), 317–345.MathSciNetCrossRefzbMATHGoogle Scholar
  24. Maciejewski, M., & Bischoff, J. (2017). Congestion effects of autonomous taxi fleets. Transport, 9, 1–10.CrossRefGoogle Scholar
  25. Maciejewski, M., Bischoff, J., Hrl, S., & Nagel, K. (2018). Towards a testbed for dynamic vehicle routing algorithms. In International conference on practical applications of agents and multi-agent systems—Workshop on the application of agents to passenger transport (PAAMS-TAAPS) (in press).Google Scholar
  26. Mitchell, W. J., Borroni-Bird, C. E., & Burns, L. D. (2010). Reinventing the automobile: Personal urban mobility for the 21st century. Cambridge: MIT Press.Google Scholar
  27. Neuburger, H. (1971). The economics of heavily congested roads. Transportation Research, 5(4), 283–293.CrossRefGoogle Scholar
  28. Osorio, C., & Bierlaire, M. (2009). An analytic finite capacity queueing network model capturing the propagation of congestion and blocking. European Journal of Operational Research, 196(3), 996–1007.CrossRefzbMATHGoogle Scholar
  29. Papageorgiou, M., Hadj-Salem, H., & Blosseville, J. M. (1991). ALINEA: A local feedback control law for on-ramp metering. Transportation Research Record: Journal of the Transportation Research Board, 1320, 58–64.Google Scholar
  30. Pavone, M., Smith, S. L., Frazzoli, E., & Rus, D. (2012). Robotic load balancing for mobility-on-demand systems. International Journal of Robotics Research, 31(7), 839–854.CrossRefGoogle Scholar
  31. Peeta, S., & Mahmassani, H. S. (1995). System optimal and user equilibrium time-dependent traffic assignment in congested networks. Annals of Operations Research, 60(1), 81–113.CrossRefzbMATHGoogle Scholar
  32. Pérez, J., Seco, F., Milanés, V., Jiménez, A., Díaz, J. C., & De Pedro, T. (2010). An RFID-based intelligent vehicle speed controller using active traffic signals. Sensors, 10(6), 5872–5887.CrossRefGoogle Scholar
  33. Raghavan, P., & Tompson, C. D. (1987). Randomized rounding: A technique for provably good algorithms and algorithmic proofs. Combinatorica, 7(4), 365–374.MathSciNetCrossRefzbMATHGoogle Scholar
  34. Seow, K. T., Dang, N. H., & Lee, D. H. (2010). A collaborative multiagent taxi-dispatch system. IEEE Transactions on Automation Sciences and Engineering, 7(3), 607–616.CrossRefGoogle Scholar
  35. Spieser, K., Treleaven, K., Zhang, R., Frazzoli, E., Morton, D., & Pavone, M. (2014). Toward a systematic approach to the design and evaluation of autonomous mobility-on-demand systems: A case study in Singapore. In: G. Meyer & S. Beiker (Eds.), Road vehicle automation (pp. 229–245). Springer.Google Scholar
  36. Srinivasan, A. (1999). A survey of the role of multicommodity flow and randomization in network design and routing. In P. M. Pardalos, S. Rajasekaran, & J. D. P. Rolim (Eds.), Randomization methods in algorithm design: DIMACS Workshop, December 12–14, 1997 (pp. 271–302). American Mathematical Society.Google Scholar
  37. Tardos, É. (1985). A strongly polynomial minimum cost circulation algorithm. Combinatorica, 5(3), 247–255.MathSciNetCrossRefzbMATHGoogle Scholar
  38. Templeton, B. (2010). Traffic congestion & capacity. Available at http://www.templetons.com/brad/robocars/congestion.html. Accessed 15 Feb 2017.
  39. Treiber, M., Hennecke, A., & Helbing, D. (2000). Microscopic simulation of congested traffic. In D. Helbing, H. J. Herrmann, M. Schreckenberg, & D. E. Wolf (Eds.), Traffic and granular flow ’99 (pp. 365–376). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  40. Treleaven, K., Pavone, M., & Frazzoli, E. (2011). An asymptotically optimal algorithm for pickup and delivery problems. In Proceedings of IEEE Conference on decision and control.Google Scholar
  41. Treleaven, K., Pavone, M., & Frazzoli, E. (2012). Models and efficient algorithms for pickup and delivery problems on roadmaps. In Proceedings of IEEE conference on decision and control.Google Scholar
  42. Treleaven, K., Pavone, M., & Frazzoli, E. (2013). Asymptotically optimal algorithms for one-to-one pickup and delivery problems with applications to transportation systems. IEEE Transactions on Automatic Control, 58(9), 2261–2276.MathSciNetCrossRefzbMATHGoogle Scholar
  43. Urmson, C. (2014). Just press go: Designing a self-driving vehicle. Available at http://googleblog.blogspot.com/2014/05/just-press-go-designing-self-driving.html. Accessed 15 Feb 2017.
  44. Wardrop, J. G. (1952). Some theoretical aspects of road traffic research. Proceedings of the Institution of Civil Engineers, 1(3), 325–362.CrossRefGoogle Scholar
  45. Wilkie, D., van den Berg, J. P., Lin, M. C., & Manocha, D. (2011). Self-aware traffic route planning. In Proceedings of AAAI conference on artificial intelligence.Google Scholar
  46. Wilkie, D., Baykal, C., & Lin, M. C. (2014). Participatory route planning. In ACM SIGSPATIAL.Google Scholar
  47. Xiao, N., Frazzoli, E., Luo, Y., Li, Y., Wang, Y., & Wang, D. (2015). Throughput optimality of extended back-pressure traffic signal control algorithm. In Mediterranean conference on control and automation.Google Scholar
  48. Yang, Q., & Koutsopoulos, H. N. (1996). A microscopic traffic simulator for evaluation of dynamic traffic management systems. Transportation Research Part C: Emerging Technologies, 4(3), 113–129.CrossRefGoogle Scholar
  49. Zhang, R., & Pavone, M. (2016). Control of robotic mobility-on-demand systems: A queueing-theoretical perspective. International Journal of Robotics Research, 35(1–3), 186–203.CrossRefGoogle Scholar
  50. Zhang, R., Rossi, F., & Pavone, M. (2016). Model predictive control of autonomous mobility-on-demand systems. In Proceedings of IEEE conference on robotics and automation.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Aeronautics and AstronauticsStanford UniversityStanfordUSA
  2. 2.Zoox Inc.Menlo ParkUSA
  3. 3.Department of PhysicsStanford UniversityStanfordUSA

Personalised recommendations