Autonomous Robots

, Volume 43, Issue 3, pp 557–573 | Cite as

A robust set approach for mobile robot localization in ambient environment

  • Etienne ColleEmail author
  • Simon Galerne


Mobile robot localization consists in estimating the robot coordinates using real-time measurements. In ambient environment context, data can come both from the robot on-board sensors and from environment objects, mobile or not, able to sense the robot. The paper considers localization problem as a nonlinear bounded-error estimation of the state vector. The components of the state vector are the robot coordinates as well as the 2D position and orientation. The approach based on interval analysis can satisfy the needs of ambient environment by easily taking account a heterogeneous set and a variable number of measurements. Bounded-error state estimation can be an alternative to particle filtering which is sensitive to non-consistent measures, large measure errors, and drift of evolution model. The paper addresses the theoretical formulation of the set-membership approach and the application to the estimation of the robot localization. Additional treatments are added to the estimator in order to meet more realistic conditions. Treatments aim at reducing the effects of disruptive events: outliers, model inaccuracies or model drift and robot kidnapping. Simulation results show the contribution of each step of the estimator.


Robot mobile localization Interval analysis Bounded-error Outlier Model inaccuracy and drift Multi-hypothesis tracking 


  1. Bar-Shalom Y. (1998). Estimation and tracking: Principles, techniques, and software. Artech House, Boston, MA, 1993. Reprinted by YBS Publishing.Google Scholar
  2. Benhamou, F., Goualard, F., Granvilliers, L., & Puget, J. F. (1999). Revising hull and box consistency. In International conference on logic programming (pp. 230–244). MIT press.Google Scholar
  3. Casini, M., Garulli, A. & Vicino, A. (2014). A constraint selection technique for recursive set membership identification. In Proceeding of 19th IFAC world congress (pp. 1790–1795).Google Scholar
  4. Castellanos, J. M., Neira, J. & Tardos, J. D. (2004). Limits to the consistency of EKF based SLAM. In Proceedings of the 5th IFAC CSymposium on intelligent autonomous vehicles (pp. 1244–1249).Google Scholar
  5. Ceccarelli, N., Di Marco M., Garulli, A., Giannitrapani, A. & Vicino, A. (2006). Set membership localization and map building for mobile robots. In Current trends in nonlinear systems and control (pp. 289–308). Springer.Google Scholar
  6. Cox, I. J. (1991). Blanche—An experiment in guidance and navigation of an autonomous mobile robot. IEEE Transactions on Robotics and Automation, 7(3), 193–204.CrossRefGoogle Scholar
  7. Di Marco, M., Garulli, A., Giannitrapani, A., & Vicino, A. (2004). A set theoretic approach to dynamic robot localization and mapping. Autonomous Robots, 16, 23–47.CrossRefGoogle Scholar
  8. Dissanayake, G., Huang, S. & Wang, Z. (2011). A review of recent developments in simultaneous localization and mapping . In proceeding of IEEE international conference on industrial and information systems (ICIIS) (pp. 477–482).Google Scholar
  9. Dissanayake, M., Newman, P., Clark, S., Durrant-Whyte, H. F., & Csorba, M. (2001). A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 17(3), 229–241.CrossRefGoogle Scholar
  10. Drevelle, V. & Bonnifait P. (2010). Robust positioning using relaxed constraint-propagation. In Proceeding of international conference on intelligent robots and systems (IROS) (vol. 10, pp. 4843–4848).Google Scholar
  11. Drocourt, C., Delahoche, L., Marhic, B. & Brassart, E. (2003). Localization of a robot and guaranteed map building using interval analysis. In Proceeding of international conference on principles and practice of constraint programming (pp. 17–32).Google Scholar
  12. Filliat, D., & Meyer, J. (2003). Map-based navigation in mobile robots, a review of localization strategies. Journal of Cognitive Systems Research, 4(4), 243–282.CrossRefGoogle Scholar
  13. Garulli, A., & Vicino, A. (2001). Set membership localization of mobile robots via angle measurements. IEEE Transactions on Robotics and Automation, 17(4), 450–463.CrossRefGoogle Scholar
  14. Gustafson, F. (2010). Particle filter theory and practice with positioning applications. IEEE Aerospace and Electronic Systems Magazine, 7(25), 53–81.CrossRefGoogle Scholar
  15. Hanebeck U. D., Schmidt G. (1996). Set theoretical localization of fast mobile robots using an angle measurement technique. In Proceeding of IEEE international conference on robotics and automation (ICRA) (pp. 1387–1394).Google Scholar
  16. Jaulin, L. (2009). Robust set-membership state estimation; application to underwater robotics. Automatica, 45(1), 202–206.MathSciNetCrossRefzbMATHGoogle Scholar
  17. Jaulin, L., Kieffer, M., Walter, E., & Meizel, D. (2002). Guaranteed robust nonlinear estimation with application to robot localization. IEEE Transaction SMC, Part C Applications and Review, 32(4), 254–267.Google Scholar
  18. Jaulin, L., & Walter, E. (1993). Set inversion via interval analysis for nonlinear bounded-error estimation. Automatica, 29(4), 1053–1064.MathSciNetCrossRefzbMATHGoogle Scholar
  19. Kieffer, M., Jaulin, L., Walter, E., & Meizel, D. (2000). Robust autonomous robot localization using interval analysis. Reliable Computing, 6(3), 337–362.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Lambert, E., A., Gruyer, D., Vincke B. & Seignez, E. (2009) Consistent Outdoor Vehicle Localization by Bounded-Error State Estimation. In Proceeding of international conference on robots and systems (IROS) (pp. 1211–1216).Google Scholar
  21. Lefebvre, T., Bruyninckx, H., & De Schutter, J. (2004). Kalman filters for non-linear systems: A comparison of performance. International Journal of Control, 77(7), 639–653.MathSciNetCrossRefzbMATHGoogle Scholar
  22. Leonard, J. J., Durrant-Whyte, H. F., & Cox, I. J. (1992). Dynamic map building for an autonomous mobile robot. IEEE Transactions on Robotics and Automation, 11(4), 89–96.Google Scholar
  23. Lévêque, O., Jaulin, L., Meizel, D. & Walter, E. (1997). Vehicule localization from inaccurate telemetric data: a set of inversion approach. In proceeding IFAC symposium on robot Control (vol. 1, pp. 179–186).Google Scholar
  24. Li, X. R., & Zhao, Z. (2006). Evaluation of estimation algorithms part I: Incomprehensive measures of performance. IEEE Transactions on Aerospace and Electronic Systems, 42(4), 1340–1358.CrossRefGoogle Scholar
  25. Moore, R. E. (1979). Method and applications of internal analysis. Philadelphia: SIAM.CrossRefGoogle Scholar
  26. Paull, L., Saeedi, S., Seto, M., & Li, H. (2014). AUV navigation and localization-ng A review. IEEE Oceanic Engineering Journal, 39(1), 131–149.CrossRefGoogle Scholar
  27. Piasecki, M. (1995). Global localization for mobile robots by multiple hypothesis tracking. Robotics and Autonomous Systems, 6, 93–104.CrossRefGoogle Scholar
  28. Reynet, O., Jaulin, L. & Chabert, G. (2009). Robust TDOA passive location using interval analysis and contractor. In Proceeding of international conference on radar (pp. 1–6).Google Scholar
  29. Sabater A., Thomas F. (1991). Set membership approach to the propagation of uncertain geometric information. In Proceeding of IEEE international conference on robotics and automation (ICRA) (pp. 2718–2723).Google Scholar
  30. Seignez, E., Kieffer, E. M., Lambert, A., Walter, E., & Maurin, T. (2009). Realtime bounded-error state estimation for vehicle tracking. International Journal of Robotics Research, 28(1), 34–48.CrossRefGoogle Scholar
  31. Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2000). Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 128(1–2), 99–141.zbMATHGoogle Scholar
  32. Waltz, D. L. (1972). Generating semantic description from drawings of scenes with shadows. Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory IBISCUniversity of EvryEvryFrance

Personalised recommendations