Autonomous Robots

, Volume 42, Issue 8, pp 1635–1650 | Cite as

Distributed camouflage for swarm robotics and smart materials

  • Yang LiEmail author
  • John Klingner
  • Nikolaus Correll
Part of the following topical collections:
  1. Special Issue on Distributed Robotics: From Fundamentals to Applications


We present distributed algorithms for a swarm of static particles to camouflage in an environment by generating colored patterns similar to those perceived in the environment, mimicking the camouflage systems used by cephalopods. We assume each particle to be equipped with sensing, computation, and local communication abilities. For pattern recognition, each particle measures local color and brightness information, exchanges this information with its neighbors, determines local match with a library of patterns, and finally performs a consensus algorithm. For pattern formation, particles implement a distributed variant of Turing’s pattern generator. Together, these algorithms enable the swarm to obtain a high-level understanding of its environment and to quickly adapt its appearance to changing environments. All algorithms are evaluated on a swarm of 64 miniature robots (“Droplets”) that can sense and change color, and exchange information using directed infrared communication. With required computation being minimal and communication exclusively local, the system serves as a blueprint for further miniaturization and work in biomimetic camouflage.


Smart materials Swarm robotics Autonomous robots Artificial camouflage 



This research has been supported by NSF Grant #1150223 and by the Airforce Office of Scientific Research.


  1. Bian, P., Jin, Y., & Zhang, Nr. (2010). Fuzzy c-means clustering based digital camouflage pattern design and its evaluation. In Signal Processing (ICSP), 2010 IEEE 10th International Conference on, IEEE (pp. 1017–1020).Google Scholar
  2. Bradbury, J. W., & Vehrencamp, S. L., et al. (2011). Principles of animal communication. Sinauer Associates Sunderland.Google Scholar
  3. Butera, W. J., & Bove, Jr. V. M. (2002). Programming a paintable computer. PhD thesis, Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences.Google Scholar
  4. Chou, H. H., Nguyen, A., Chortos, A., To, J. W., Lu, C., Mei, J., Kurosawa, T., Bae, W. G., Tok, J. B. H., & Bao, Z. (2015). A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nature Communications 6.Google Scholar
  5. Farrow, N., Klingner, J., Reishus, D., & Correll, N. (2014). Miniature six-channel range and bearing system: algorithm, analysis and experimental validation. In 2014 IEEE International Conference on Robotics and Automation (ICRA), IEEE (pp. 6180–6185).Google Scholar
  6. Fekete, S. P., Fey, D., Komann, M., Kröller, A., Reichenbach, M., & Schmidt, C. (2009). Distributed vision with smart pixels. In Proceedings of the Twenty-fifth Annual Symposium on Computational Geometry, ACM (pp. 257–266).Google Scholar
  7. Fishman, A., Rossiter, J., & Homer, M. (2015). Hiding the squid: Patterns in artificial cephalopod skin. Journal of the Royal Society Interface, 12(108), 20150,281.CrossRefGoogle Scholar
  8. Grossberg, S., Mingolla, E., & Ross, W. D. (1997). Visual brain and visual perception: How does the cortex do perceptual grouping? Trends in Neurosciences, 20(3), 106–111.CrossRefGoogle Scholar
  9. Hanlon, R. (2007). Cephalopod dynamic camouflage. Current Biology, 17(11), R400–R404.CrossRefGoogle Scholar
  10. Hanlon, R. T., & Messenger, J. B. (1988). Adaptive coloration in young cuttlefish (sepia officinalis l.): The morphology and development of body patterns and their relation to behaviour. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 320(1200), 437–487.CrossRefGoogle Scholar
  11. Inami, M., Kawakami, N., & Tachi, S. (2003). Optical camouflage using retro-reflective projection technology. In Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality, IEEE Computer Society (p. 348).Google Scholar
  12. Jain, R., Kasturi, R., & Schunck, B. G. (1995). Machine vision (Vol. 5). New York: McGraw-Hill.Google Scholar
  13. Kelman, E. J., Osorio, D., & Baddeley, R. J. (2008). A review of cuttlefish camouflage and object recognition and evidence for depth perception. Journal of Experimental Biology, 211(11), 1757–1763.CrossRefGoogle Scholar
  14. Klingner, J., Kanakia, A., Farrow, N., Dustin, R., & Correll, N. (2014). A stick-slip omnidirectional drive-train for low-cost swarm robotics: Mechanism, calibration, and control. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 846–851).Google Scholar
  15. Kondo, S., & Miura, T. (2010). Reaction-diffusion model as a framework for understanding biological pattern formation. Science, 329(5999), 1616–1620.MathSciNetCrossRefGoogle Scholar
  16. Lamme, V. A. (1995). The neurophysiology of figure-ground segregation in primary visual cortex. Journal of Neuroscience, 15(2), 1605–1615.CrossRefGoogle Scholar
  17. Lasbury, M. E. (2017). Cloaking devices: Vanishing into thin space. In The Realization of Star Trek Technologies, Springer (pp. 35–66).Google Scholar
  18. Lin, H. Y., Lie, W. N., & Wang, M. L. (2009). A framework of view-dependent planar scene active camouflage. International Journal of Imaging Systems and Technology, 19(3), 167–174.CrossRefGoogle Scholar
  19. Meinhardt, H. (1982). Models of biological pattern formation (Vol. 6). London: Academic Press.Google Scholar
  20. Meinhardt, H. (2009). The algorithmic beauty of sea shells. Berlin: Springer.CrossRefGoogle Scholar
  21. Meinhardt, H., & Gierer, A. (2000). Pattern formation by local self-activation and lateral inhibition. Bioessays, 22(8), 753–760.CrossRefGoogle Scholar
  22. Messenger, J. B. (1977). Evidence that octopus is colour blind. Journal of Experimental Biology, 70(1), 49–55.Google Scholar
  23. Messenger, J. B. (2001). Cephalopod chromatophores: Neurobiology and natural history. Biological Reviews, 76(4), 473–528.CrossRefGoogle Scholar
  24. Mirollo, R. E., & Strogatz, S. H. (1990). Synchronization of pulse-coupled biological oscillators. SIAM Journal on Applied Mathematics, 50(6), 1645–1662.MathSciNetCrossRefGoogle Scholar
  25. Morin, S. A., Shepherd, R. F., Kwok, S. W., Stokes, A. A., Nemiroski, A., & Whitesides, G. M. (2012). Camouflage and display for soft machines. Science, 337(6096), 828–832.CrossRefGoogle Scholar
  26. Otte, M. (2016). Collective cognition and sensing in robotic swarms via an emergent group-mind. In International Symposium on Experimental Robotics, Springer (pp. 829–840).Google Scholar
  27. Peek, J. E., Hepfinger, L., Balma, R., Christopher, G., Fleuriet, J., Honke, T., Huebner, G., Mauer, E., Dotoli, P., & Ronconi, P. et al. (2006). Guidelines for camouflage assessment using observers (instructions pour les evaluations de camouflage faisant appel a des observateurs)(cd-rom). Tech. rep., Nato Research and Technology Organization Neuilly-Sur-Seine (France).Google Scholar
  28. Pendry, J. B., Schurig, D., & Smith, D. R. (2006). Controlling electromagnetic fields. Science, 312(5781), 1780–1782.MathSciNetCrossRefGoogle Scholar
  29. Ramirez, M. D., & Oakley, T. H. (2015). Eye-independent, light-activated chromatophore expansion (lace) and expression of phototransduction genes in the skin of octopus bimaculoides. Journal of Experimental Biology, 218(10), 1513–1520.CrossRefGoogle Scholar
  30. Rossiter, J., Yap, B., & Conn, A. (2012). Biomimetic chromatophores for camouflage and soft active surfaces. Bioinspiration & Biomimetics, 7(3), 036,009.CrossRefGoogle Scholar
  31. Smith, D. R. (2014). A cloaking coating for murky media. Science, 345(6195), 384–385.CrossRefGoogle Scholar
  32. Stevens, M., & Merilaita, S. (2009). Animal camouflage: Current issues and new perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1516), 423–427.CrossRefGoogle Scholar
  33. Stevens, M., & Merilaita, S. (2011). Animal camouflage: Mechanisms and function. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  34. Stevens, M., Cuthill, I. C., Windsor, A. M., & Walker, H. J. (2006). Disruptive contrast in animal camouflage. Proceedings of the Royal Society of London B: Biological Sciences, 273(1600), 2433–2438.CrossRefGoogle Scholar
  35. Stuart-Fox, D., & Moussalli, A. (2009). Camouflage, communication and thermoregulation: Lessons from colour changing organisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1516), 463–470.CrossRefGoogle Scholar
  36. Toet, A. (2000). Technical evaluation report. In Search and TargetAcquisition: NATO RTO Meeting Proceedings (vol. 45).Google Scholar
  37. Troscianko, T., Benton, C. P., Lovell, P. G., Tolhurst, D. J., & Pizlo, Z. (2009). Camouflage and visual perception. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1516), 449–461.CrossRefGoogle Scholar
  38. Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 237(641), 37–72.MathSciNetCrossRefGoogle Scholar
  39. Wang, Q., Gossweiler, G. R., Craig, S. L., & Zhao, X. (2014). Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning. Nature Communications 5.Google Scholar
  40. Webb, B. (2001). Can robots make good models of biological behaviour? Behavioral and Brain Sciences, 24(06), 1033–1050.Google Scholar
  41. Werner-Allen, G., Tewari, G., Patel, A., Welsh, M., & Nagpal, R. (2005). Firefly-inspired sensor network synchronicity with realistic radio effects. In Proceedings of the Third International Conference on Embedded Networked Sensor Systems, ACM (pp. 142–153).Google Scholar
  42. Xiao, L., Boyd, S., & Lall, S. (2005). A scheme for robust distributed sensor fusion based on average consensus. In Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth International Symposium on, IEEE (pp. 63–70).Google Scholar
  43. Ying, X. (2007). Camouflage color selection based on dominant color extraction. Opto-Electronic Engineering, 1, 025.Google Scholar
  44. Young, D. A. (1984). A local activator-inhibitor model of vertebrate skin patterns. Mathematical Biosciences, 72(1), 51–58.MathSciNetCrossRefGoogle Scholar
  45. Yu, C., Li, Y., Zhang, X., Huang, X., Malyarchuk, V., Wang, S., et al. (2014). Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proceedings of the National Academy of Sciences, 111(36), 12,998–13,003.CrossRefGoogle Scholar
  46. Zylinski, S., Osorio, D., & Shohet, A. (2009). Perception of edges and visual texture in the camouflage of the common cuttlefish, sepia officinalis. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1516), 439–448.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of ColoradoBoulderUSA

Personalised recommendations