Autonomous Robots

, Volume 43, Issue 1, pp 1–20 | Cite as

Tracking multiple Autonomous Underwater Vehicles

  • José MeloEmail author
  • Aníbal C. Matos


In this paper we present a novel method for the acoustic tracking of multiple Autonomous Underwater Vehicles. While the problem of tracking a single moving vehicle has been addressed in the literature, tracking multiple vehicles is a problem that has been overlooked, mostly due to the inherent difficulties on data association with traditional acoustic localization networks. The proposed approach is based on a Probability Hypothesis Density Filter, thus overcoming the data association problem. Our tracker is able not only to successfully estimate the positions of the vehicles, but also their velocities. Moreover, the tracker estimates are labelled, thus providing a way to establish track continuity of the targets. Using real word data, our method is experimentally validated and the performance of the tracker is evaluated.


Marine robotics Position estimation Underwater robotics Multiple target tracking 



This work is financed by the ERDF—European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme, and by National Funds through the FCT—Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project Open image in new window POCI-01-0145-FEDER-006961 Open image in new window . The first author was supported by the Portuguese Foundation for Science and Technology through the Ph.D. grant SFRH/BD/70727/2010.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. Almeida, R., Melo, J., & Cruz, N. (2016). Characterization of measurement errors in a LBL positioning system. In Proceedings of the MTS/IEEE Oceans’16 Conference, Shanghai, China.Google Scholar
  2. Bar-Shalom, Y., & Li, X. (1995). Multitarget-multisensor tracking: Principles and techniques. London: Yaakov Bar-Shalom.Google Scholar
  3. Braca, P., Goldhahn, R., LePage, K., Marano, S., Matta, V., & Willett, P. (2014). Cognitive multistatic AUV networks. In 2014 17th international conference on information fusion (FUSION) (pp. 1–7).Google Scholar
  4. Choi, J. & Choi, H. -T. (2015). Multi-target localization of underwater acoustic sources based on probabilistic estimation of direction angle. In Proceedings of the MTS/IEEE Oceans’15 conference, Genova, Italy (pp. 1–6).Google Scholar
  5. Clark, D., & Bell, J. (2007). Multi-target state estimation and track continuity for the particle phd filter. IEEE Transactions on Aerospace and Electronic Systems, 43(4), 1441–1453.CrossRefGoogle Scholar
  6. Clark, D. E. (2006). Multiple target tracking with the probability hypothesis density filter. Ph.D. thesis, Heriot-Watt University.Google Scholar
  7. Cruz, N., Matos, A., Cunha, S., & Silva, S. (2007). Zarco—An autonomous craft for underwater surveys. In Proceedings of the 7th geomatic week, Barcelona, Spain.Google Scholar
  8. Erdinc, O., Willett, P., & Coraluppi, S. (2008). The gaussian mixture cardinalized phd tracker on mstwg and seabar datasets. In Information Fusion, 2008 11th International Conference on, pages 1–8.Google Scholar
  9. Fiorelli, E., Leonard, N., Bhatta, P., Paley, D., Bachmayer, R., & Fratantoni, D. (2006). Multi-auv control and adaptive sampling in monterey bay. IEEE Journal of Oceanic Engineering, 31(4), 935–948.CrossRefGoogle Scholar
  10. Fulton, T. F., Cassidy, C. J., Stokey, R. G., & Leonard, J. J. (2000). Navigation sensor data fusion for the AUV REMUS. In Proceedings of the symposium on underwater robotic technology, World Automation Congress, Hawaii.Google Scholar
  11. Georgescu, R., Schoenecker, S., & Willett, P. (2009). Gm-cphd and mlpda applied to the seabar07 and tno-blind multi-static sonar data. In 2009. FUSION ’09. 12th international conference on information fusion (pp. 1851–1858).Google Scholar
  12. Georgy, J., & Noureldin, A. (2014). Unconstrained underwater multi-target tracking in passive sonar systems using two-stage pf-based technique. International Journal of Systems Science, 45(3), 439–455.CrossRefzbMATHGoogle Scholar
  13. Georgy, J., Noureldin, A., & Mellema, G. (2012). Clustered mixture particle filter for underwater multitarget tracking in multistatic active sonobuoy systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 42(4), 547–560.CrossRefGoogle Scholar
  14. Granstrom, K., Lundquist, C., Gustafsson, F., & Orguner, U. (2014). Random set methods: Estimation of multiple extended objects. IEEE Robotics and Automation Magazine, 21(2), 73–82.CrossRefGoogle Scholar
  15. Hol, J., Schon, T., & Gustafsson, F. (2006). On resampling algorithms for particle filters. In 2006 IEEE nonlinear statistical signal processing workshop (pp. 79–82).Google Scholar
  16. Kreucher, C., & Shapo, B. (2011). Multitarget detection and tracking using multisensor passive acoustic data. IEEE Journal of Oceanic Engineering, 36(2), 205–218.CrossRefGoogle Scholar
  17. Lang, T., Dunne, D., & Mellema, G. (2009). An assessment of hierarchical data fusion using seabar’07 data. In 2009. FUSION ’09. 12th international conference on information fusion (pp. 1560–1567).Google Scholar
  18. Leonard, N. E., Paley, D. A., Davis, R. E., Fratantoni, D. M., Lekien, F., & Zhang, F. (2010). Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in monterey bay. Journal of Field Robotics, 27(6), 718–740.CrossRefGoogle Scholar
  19. Lin, L., Bar-Shalom, Y., & Kirubarajan, T. (2006). Track labeling and phd filter for multitarget tracking. IEEE Transactions on Aerospace and Electronic Systems, 42(3), 778–795.CrossRefGoogle Scholar
  20. Ma, W.-K., Vo, B.-N., Singh, S., & Baddeley, A. (2006). Tracking an unknown time-varying number of speakers using tdoa measurements: A random finite set approach. IEEE Transactions on Signal Processing, 54(9), 3291–3304.CrossRefzbMATHGoogle Scholar
  21. Mahler, R. (2003). Multitarget bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 39(4), 1152–1178.CrossRefGoogle Scholar
  22. Mahler, R. (2008). Random set theory for multisource-multitarget information fusion. In M. E. Liggins, D. L. Hall, & J. Llinas (Eds.), Handbook of multisensor data fusion: Theory and practice (second ed., pp. 369–410). Boca Raton: CRC Press.CrossRefGoogle Scholar
  23. Mahler, R. (2013). “statistics 102” for multisource-multitarget detection and tracking. IEEE Journal of Selected Topics in Signal Processing, 7(3), 376–389.CrossRefGoogle Scholar
  24. Marino, A., Antonelli, G., Aguiar, A., Pascoal, A., & Chiaverini, S. (2015). A decentralized strategy for multirobot sampling/patrolling: Theory and experiments. IEEE Transactions on Control Systems Technology, 23(1), 313–322.CrossRefGoogle Scholar
  25. Matos, A., Cruz, N., Martins, A., & Pereira, F. (1999). Development and implementation of a low-cost lbl navigation system for an auv. In Proceedings of the MTS/IEEE Oceans’99 conference (Vol. 2, pp. 774–779). Seattle, USA.Google Scholar
  26. Mazurek, P. (2008). Deghosting methods for track-before-detect multitarget multisensor algorithms. In J. M. R. Arreguin (Ed.), Automation and Robotics. I-Tech Education and Publishing.Google Scholar
  27. Melo, J., & Matos, A. (2008). Guidance and control of an asv in auv tracking operations. In Proceedings of the MTS/IEEE Oceans’08 conference (pp. 1–7), Quebec City, Canada.Google Scholar
  28. Melo, J., & Matos, A. (2014). A phd filter for tracking multiple auvs. In Proceedings of the MTS/IEEE Oceans’14 conference (pp. 1–8), St. John’s, Canada.Google Scholar
  29. Morelande, M., Suvorova, S., Fletcher, F., Simakov, S., & Moran, B. (2015). Multi-target tracking for multistatic sonobuoy systems. In 2015 18th International Conference on Information Fusion (Fusion) (pp. 327–332).Google Scholar
  30. Napolitano, F., Cretollier, F., & Pelletier, H. (2005). Gaps, combined usbl + ins + gps tracking system for fast deployable amp; high accuracy multiple target positioning. In Proceedings of the MTS/IEEE Oceans’08 conference (Vol. 2, pp. 1415–1420), Brest, France.Google Scholar
  31. Odell, D., Hertel, K., & Nielsen, C. (2002). New acoustic systems for auv tracking, communications, and noise measurement at nswccd-ard, lake pend oreille, idaho. In Proceedings of the MTS/IEEE Oceans’02 conference (Vol. 1, pp. 266–271), Biloxi, USA.Google Scholar
  32. Paull, L., Huang, G., Seto, M., & Leonard, J. (2015). Communication-constrained multi-auv cooperative slam. In 2015 IEEE international conference on robotics and automation (ICRA) (pp. 509–516).Google Scholar
  33. Peñas, A. A. (2009). Positioning and navigation systems for robotic underwater vehicles. Ph.D. thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa.Google Scholar
  34. Prins, R., & Kandemir, M. (2008). Time-constrained optimization of multi-auv cooperative mine detection. In Proceedings of the MTS/IEEE Oceans’08 conference (pp. 1–13), Quebec City, Canada.Google Scholar
  35. Schulz, B., Hobson, B., Kemp, M., Meyer, J., Moody, R., Pinnix, H., & St Clair, M. (2003). Field results of multi-uuv missions using ranger micro-uuvs. In Proceedings of the MTS/IEEE Oceans’03 conference (Vol. 2, pp. 956–961), San Diego, USA.Google Scholar
  36. Stone, L., Streit, R., Corwin, T., & Bell, K. (2013). Bayesian multiple target tracking, Second Edition: Radar/Remote Sensing. Artech House.Google Scholar
  37. Vahidi, A., Stefanopoulou, A., & Peng, H. (2005). Recursive least squares with forgetting for online estimation of vehicle mass and road grade: Theory and experiments. Vehicle System Dynamics, 43(1), 31–55.CrossRefGoogle Scholar
  38. Vo, B. N., & Ma, W. K. (2005). A closed-form solution for the probability hypothesis density filter. In 7th international conference on information fusion (Vol. 2, p. 8).Google Scholar
  39. Vo, B.-N., Singh, S., & Doucet, A. (2005). Sequential monte carlo methods for multitarget filtering with random finite sets. IEEE Transactions on Aerospace and Electronic Systems, 41(4), 1224–1245.CrossRefGoogle Scholar
  40. Vo, B.-T., & Vo, B.-N. (2013). Labeled random finite sets and multi-object conjugate priors. IEEE Transactions on Signal Processing, 61(13), 3460–3475.MathSciNetCrossRefzbMATHGoogle Scholar
  41. Wang, X., Xu, M., Wang, H., Wu, Y., & Shi, H. (2012). Combination of interacting multiple models with the particle filter for three-dimensional target tracking in underwater wireless sensor networks. Mathematical Problems in Engineering, 2012(829451), 1–16.MathSciNetzbMATHGoogle Scholar
  42. Watanabe, Y., Ochi, H., Shimura, T., & Hattori, T. (2009). A tracking of auv with integration of ssbl acoustic positioning and transmitted ins data. In Proceedings of the MTS/IEEE Oceans’09 conference (pp. 1–6), Bremen, Germany.Google Scholar
  43. Yang, R., Ng, G. W., & Bar-Shalom, Y. (2013). Tracking/fusion and deghosting with doppler frequency from two passive acoustic sensors. In 2013 16th international conference on information fusion (FUSION) (pp. 1784–1790).Google Scholar
  44. Zhang, S., Chen, H., & Liu, M. (2014). Adaptive sensor scheduling for target tracking in underwater wireless sensor networks. In 2014 international conference on mechatronics and control (ICMC) (pp. 55–60).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversity of PortoPortoPortugal
  2. 2.INESC TECPortoPortugal

Personalised recommendations