Advertisement

Gaussian process decentralized data fusion meets transfer learning in large-scale distributed cooperative perception

  • Ruofei Ouyang
  • Bryan Kian Hsiang LowEmail author
Article
  • 14 Downloads
Part of the following topical collections:
  1. Special Issue on Multi-Robot and Multi-Agent Systems

Abstract

This paper presents novel Gaussian process decentralized data fusion algorithms exploiting the notion of agent-centric support sets for distributed cooperative perception of large-scale environmental phenomena. To overcome the limitations of scale in existing works, our proposed algorithms allow every mobile sensing agent to utilize a different support set and dynamically switch to another during execution for encapsulating its own data into a local summary that, perhaps surprisingly, can still be assimilated with the other agents’ local summaries (i.e., based on their current support sets) into a globally consistent summary to be used for predicting the phenomenon. To achieve this, we propose a novel transfer learning mechanism for a team of agents capable of sharing and transferring information encapsulated in a summary based on a support set to that utilizing a different support set with some loss that can be theoretically bounded and analyzed. To alleviate the issue of information loss accumulating over multiple instances of transfer learning, we propose a new information sharing mechanism to be incorporated into our algorithms in order to achieve memory-efficient lazy transfer learning. Empirical evaluation on three real-world datasets for up to 128 agents show that our algorithms outperform the state-of-the-art methods.

Keywords

Gaussian process Decentralized data fusion Scalability 

Notes

References

  1. Cao, N., Low, K. H., & Dolan, J. M. (2013). Multi-robot informative path planning for active sensing of environmental phenomena: A tale of two algorithms. In Proceedings of AAMAS.Google Scholar
  2. Chen, J., Cao, N., Low, K. H., Ouyang, R., Tan, C. K. Y., & Jaillet, P. (2013a). Parallel Gaussian process regression with low-rank covariance matrix approximations. In Proceedings of UAI (pp. 152–161).Google Scholar
  3. Chen, J., Low, K. H., Jaillet, P., & Yao, Y. (2015). Gaussian process decentralized data fusion and active sensing for spatiotemporal traffic modeling and prediction in mobility-on-demand systems. IEEE Transactions on Automation Science and Engineering, 12, 901–921.CrossRefGoogle Scholar
  4. Chen, J., Low, K. H., Tan, C. K. Y., Oran, A., Jaillet, P., Dolan, J. M., & Sukhatme, G. S. (2012). Decentralized data fusion and active sensing with mobile sensors for modeling and predicting spatiotemporal traffic phenomena. In Proceedings of UAI (pp. 163–173).Google Scholar
  5. Chen, J., Low, K. H., & Tan, C. K. Y. (2013b). Gaussian process-based decentralized data fusion and active sensing for mobility-on-demand system. In Proceedings of robotics: science and systems conference.Google Scholar
  6. Choudhury, A., Nair, P. B., & Keane, A. J. (2002). A data parallel approach for large-scale Gaussian process modeling. In Proceedings of SDM (pp. 95–111).Google Scholar
  7. Chung, T. H., Gupta, V., Burdick, J. W., & Murray, R. M. (2004). On a decentralized active sensing strategy using mobile sensor platforms in a network. In Proceedings of CDC (pp. 1914–1919).Google Scholar
  8. Coates, M. (2004). Distributed particle filters for sensor networks. In Proceedings of IPSN (pp. 99–107).Google Scholar
  9. Cortes, J. (2009). Distributed kriged Kalman filter for spatial estimation. IEEE Transactions on Automatic Control, 54(12), 2816–2827.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Das, J., Harvey, J. B. J., Py, F., Vathsangam, H., Graham, R., Rajan, K., & Sukhatme, G. S. (2013). Hierarchical probabilistic regression for AUV-based adaptive sampling of marine phenomena. In Proceedings of IEEE ICRA (pp. 5571–5578).Google Scholar
  11. Das, K., & Srivastava, A. N. (2010). Block-GP: Scalable Gaussian process regression for multimodal data. In Proceedings of ICDM (pp. 791–796).Google Scholar
  12. Daxberger, E., & Low, K. H. (2017). Distributed batch Gaussian process optimization. In Proceedings of ICML (pp. 951–960).Google Scholar
  13. Dolan, J. M., Podnar, G., Stancliff, S., Low, K. H., Elfes, A., Higinbotham, J., Hosler, J. C., Moisan, T. A., & Moisan, J. (2009). Cooperative aquatic sensing using the telesupervised adaptive ocean sensor fleet. In Proceedings of SPIE conference on remote sensing of the ocean, sea ice, and large water regions Vol. 7473.Google Scholar
  14. Guestrin, C., Bodik, P., Thibaus, R., Paskin, M., & Madden, S. (2004). Distributed regression: An efficient framework for modeling sensor network data. In Proceedings of IPSN (pp. 1–10).Google Scholar
  15. Hoang, T. N., Hoang, Q. M., & Low, K. H. (2016). A distributed variational inference framework for unifying parallel sparse Gaussian process regression models. In Proceedings of ICML (pp. 382–391).Google Scholar
  16. Hoang, Q. M., Hoang, T. N., & Low, K. H. (2017). A generalized stochastic variational Bayesian hyperparameter learning framework for sparse spectrum Gaussian process regression. In Proceedings of AAAI (pp. 2007–2014).Google Scholar
  17. Hoang, T. N., Hoang, Q. M., & Low, K. H. (2018). Decentralized high-dimensional Bayesian optimization with factor graphs. In Proceedings of AAAI (pp. 3231–3238).Google Scholar
  18. Hoang, T. N., Hoang, Q. M., Low, K. H., & How, J. P. (2019). Collective online learning of Gaussian processes in massive multi-agent systems. In Proceedings of AAAI.Google Scholar
  19. Hoang, T. N., Low, K. H., Jaillet, P., & Kankanhalli, M. (2014). Nonmyopic \(\epsilon \)-Bayes-optimal active learning of Gaussian processes. In Proceedings of ICML (pp. 739–747).Google Scholar
  20. Kim, Y., & Shell, D. (2014). Distributed robotic sampling of non-homogeneous spatiotemporal fields via recursive geometric sub-division. In Proceedings of IEEE ICRA (pp. 557–562).Google Scholar
  21. Krause, A., Singh, A., & Guestrin, C. (2008). Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies. JMLR, 9, 235–284.zbMATHGoogle Scholar
  22. Leonard, N. E., Palley, D. A., Lekien, F., Sepulchre, R., Fratantoni, D. M., & Davis, R. E. (2007). Collective motion, sensor networks, and ocean sampling. Proceedings of the IEEE, 95(1), 48–74.CrossRefGoogle Scholar
  23. Ling, C. K., Low, K. H., & Jaillet, P. (2016). Gaussian process planning with Lipschitz continuous reward functions: Towards unifying Bayesian optimization, active learning, and beyond. In Proceedings of AAAI (pp. 1860–1866).Google Scholar
  24. Low, K. H., Chen, J., Dolan, J. M., Chien, S., & Thompson, D. R. (2012). Decentralized active robotic exploration and mapping for probabilistic field classification in environmental sensing. In Proceedings of AAMAS (pp. 105–112).Google Scholar
  25. Low, K. H., Chen, J., Hoang, T. N., Xu, N., & Jaillet, P. (2015a). Recent advances in scaling up Gaussian process predictive models for large spatiotemporal data. In S. Ravela, A. Sandu (Eds.), Proceedings of dynamic data-driven environmental systems science conference (DyDESS’14), LNCS 8964, Springer.Google Scholar
  26. Low, K. H., Dolan, J. M., & Khosla, P. (2008). Adaptive multi-robot wide-area exploration and mapping. In Proceedings of AAMAS (pp. 23–30).Google Scholar
  27. Low, K. H., Dolan, J. M., & Khosla, P. (2009). Information-theoretic approach to efficient adaptive path planning for mobile robotic environmental sensing. In Proceedings of ICAPS.Google Scholar
  28. Low, K. H., Dolan, J. M., & Khosla, P. (2011). Active Markov information-theoretic path planning for robotic environmental sensing. In Proceedings of AAMAS (pp. 753–760).Google Scholar
  29. Low, K. H., Gordon, G. J., Dolan, J. M., & Khosla, P. (2007). Adaptive sampling for multi-robot wide-area exploration. In Proceedings of IEEE ICRA (pp. 755–760).Google Scholar
  30. Low, K. H., Yu, J., Chen, J., & Jaillet, P. (2015b). Parallel Gaussian process regression for big data: Low-rank representation meets Markov approximation. In Proceedings of AAAI (pp. 2821–2827).Google Scholar
  31. Min, W., & Wynter, L. (2011). Real-time road traffic prediction with spatio-temporal correlations. Transportation Research Part C: Emerging, 19(4), 606–616.CrossRefGoogle Scholar
  32. Ouyang, R., & Low, K. H. (2018). Gaussian process decentralized data fusion meets transfer learning in large-scale distributed cooperative perception. In Proceedings of AAAI (pp. 3876–3883).Google Scholar
  33. Ouyang, R., Low, K. H., Chen, J., & Jaillet, P. (2014). Multi-robot active sensing of non-stationary Gaussian process-based environmental phenomena. In Proceedings of AAMAS (pp. 573–580).Google Scholar
  34. Park, C., Huang, J. Z., & Ding, Y. (2011). Domain decomposition approach for fast Gaussian process regression of large spatial data sets. JMLR, 12, 1697–1728.MathSciNetzbMATHGoogle Scholar
  35. Paskin, M. A., Guestrin, C. (2004). Robust probabilistic inference in distributed systems. In Proceedings of UAI (pp. 436–445).Google Scholar
  36. Podnar, G., Dolan, J. M., Low, K. H., & Elfes, A. (2010). Telesupervised remote surface water quality sensing. In Proceedings of IEEE aerospace conference.Google Scholar
  37. Quiñonero-Candela, J., & Rasmussen, C. E. (2005). A unifying view of sparse approximate Gaussian process regression. JMLR, 6, 1939–1959.MathSciNetzbMATHGoogle Scholar
  38. Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. Cambridge: MIT Press.zbMATHGoogle Scholar
  39. Rosencrantz, M., Gordon, G., & Thrun, S. (2003). Decentralized sensor fusion with distributed particle filters. In Proceedings of UAI (pp. 493–500).Google Scholar
  40. Schwaighofer, A., & Tresp, V. (2002). Transductive and inductive methods for approximate Gaussian process regression. In Proceedings of NIPS (pp. 953–960).Google Scholar
  41. Singh, A., Krause, A., Guestrin, C., & Kaiser, W. J. (2009). Efficient informative sensing using multiple robots. Journal of Artificial Intelligence Research, 34, 707–755.MathSciNetCrossRefzbMATHGoogle Scholar
  42. Snelson, E. L., & Ghahramani, Z. (2007). Local and global sparse Gaussian process approximation. In Proceedings of AISTATS.Google Scholar
  43. Sukkarieh, S., Nettleton, E., Kim, J., Ridley, M., Goktogan, A., & Durrant-Whyte, H. (2003). The ANSER project: Data fusion across multiple uninhabited air vehicles. IJRR, 22(7–8), 505–539.Google Scholar
  44. Sun, S., Zhao, J., & Zhu, J. (2015). A review of Nyström methods for large-scale machine learning. Information Fusion, 26, 36–48.CrossRefGoogle Scholar
  45. Thompson, D. R., Cabrol, N., Furlong, M., Hardgrove, C., Low, K. H., Moersch, J., & Wettergreen, D. (2013). Adaptive sampling of time series with application to remote exploration. In Proceedings of IEEE ICRA (pp. 3463–3468).Google Scholar
  46. Wang, Y., & Papageorgiou, M. (2005). Real-time freeway traffic state estimation based on extended Kalman filter: A general approach. Transportation Research Part B: Methodological, 39(2), 141–167.CrossRefGoogle Scholar
  47. Work, D. B., Blandin, S., Tossavainen, O., & Piccoli, B. (2010). Bayen A (2010) A traffic model for velocity data assimilation. AMRX, 1, 1–35.zbMATHGoogle Scholar
  48. Xu, N., Low, K. H., Chen, J., Lim, K. K., & Özgül, E.B. (2014). GP-Localize: Persistent mobile robot localization using online sparse Gaussian process observation model. In Proceedings of AAAI (pp. 2585–2592).Google Scholar
  49. Zhang, K., Tsang, I. W., & Kwok, J. T. (2008). Improved Nyström low-rank approximation and error analysis. In Proceedings of ICML (pp. 1232–1239).Google Scholar
  50. Zhang, Y., Hoang, T. N., Low, K. H., & Kankanhalli, M. (2016). Near-optimal active learning of multi-output Gaussian processes. In Proceedings of AAAI.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceNational University of SingaporeSingaporeRepublic of Singapore

Personalised recommendations