Advertisement

Autonomous Robots

, Volume 42, Issue 4, pp 909–926 | Cite as

Multiple-place swarm foraging with dynamic depots

  • Qi Lu
  • Joshua P. Hecker
  • Melanie E. Moses
Article
Part of the following topical collections:
  1. Special Issue: Online Decision Making in Multi-Robot Coordination

Abstract

Teams of robots can be organized to collectively complete complex real-world tasks, for example collective foraging in which robots search for, pick up, and drop off targets in a collection zone. In the previously proposed central-place foraging algorithm (CPFA), foraging performance decreases as swarm size and search areas scale up: more robots produce more inter-robot collisions and larger search areas produce longer travel distances. We propose the multiple-place foraging algorithm with dynamic depots (\(\hbox {MPFA}_{dynamic}\)) to address these problems. Depots are special robots which are initially distributed in the search area and can carry multiple targets. Depots move to the centroids of the positions of local targets recently detected by robots. The spatially distributed design reduces robot transport time and reduces collisions among robots. We simulate robot swarms that mimic foraging ants using the \(\hbox {MPFA}_{dynamic}\) strategy, employing a genetic algorithm to optimize their behavior in the robot simulator ARGoS. Robots using the \(\hbox {MPFA}_{dynamic}\) find and collect targets faster than both the CPFA and the static MPFA. \(\hbox {MPFA}_{dynamic}\) outperforms the static MPFA even when the static depots are optimally placed using global information, and it outperforms the CPFA even when the dynamic depots deliver targets to a central location. Further, the \(\hbox {MPFA}_{dynamic}\) scales up more efficiently, so that the improvement over the CPFA and the static MPFA is even greater in large (50 \(\times \) 50 m) areas. Including simulated error reduces foraging performance across all algorithms, but the MPFA still outperforms the other approaches. Our work demonstrates that dispersed agents that dynamically adapt to local information in their environment provide more flexible and scalable swarms. In addition, we illustrate a path to implement the \(\hbox {MPFA}_{dynamic}\) in the physical robot swarm of the NASA Swarmathon competition.

Keywords

Swarm robotics Foraging Scalable system 

Notes

Acknowledgements

This work was supported by a James S. McDonnell Foundation Complex Systems Scholar Award and NASA MUREP #NNX15AM14A funding for the Swarmathon. We thank the UNM Center for Advanced Research Computing for computational resources used in this work. We gratefully acknowledge members of the Moses Biological Computation Lab for their assistance with the dynamic multiple-place foraging swarm robotics project: thanks to G. Mathew Fricke for discussing the statistical analysis of our results and implementing MPFA in Gazebo, and to Antonio Griego for developing the CPFA algorithm in ARGoS. Thanks also to Carlo Pinciroli for discussing the implementation in ARGoS.

References

  1. Ackerman, S. M., Fricke, G. M., Hecker, J. P., Hamed, K. M., Fowler, S. R., Griego, A. D., Jones, J. C., Nichol, J. J., Leucht, K. W., & Moses, M. E. (2018). The swarmathon: An autonomous swarm robotics competition. In 2018 IEEE international conference on robotics and automation (ICRA) (in review).Google Scholar
  2. Arthur, D. & Vassilvitskii, S. (2007). K-means++: The advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms, SODA ’07 (pp. 1027–1035). Philadelphia, PA: Society for Industrial and Applied Mathematics.Google Scholar
  3. Bac, C. W., Henten, E. J., Hemming, J., & Edan, Y. (2014). Harvesting robots for high-value crops: State-of-the-art review and challenges ahead. Journal of Field Robotics, 31(6), 888–911.CrossRefGoogle Scholar
  4. Banavar, J. R., Moses, M. E., Brown, J. H., Damuth, J., Rinaldo, A., Sibly, R. M., et al. (2010). A general basis for quarter-power scaling in animals. Proceedings of the National Academy of Sciences, 107(36), 15816–15820.CrossRefGoogle Scholar
  5. Banerjee, S., & Moses, M. (2010a). Modular RADAR: An immune system inspired search and response strategy for distributed systems (pp. 116–129). Berlin, Heidelberg: Springer.Google Scholar
  6. Banerjee, S., & Moses, M. (2010b). Scale invariance of immune system response rates and times: Perspectives on immune system architecture and implications for artificial immune systems. Swarm Intelligence, 4(4), 301–318.CrossRefGoogle Scholar
  7. Berman, S., Halász, Á., Hsieh, M. A., & Kumar, V. (2008). Navigation-based optimization of stochastic strategies for allocating a robot swarm among multiple sites. In 47th IEEE conference on decision and control, 2008. CDC 2008 (pp. 4376–4381).Google Scholar
  8. Beverly, B. D., McLendon, H., Nacu, S., Holmes, S., & Gordon, D. M. (2009). How site fidelity leads to individual differences in the foraging activity of harvester ants. Behavioral Ecology, 20(3), 633.CrossRefGoogle Scholar
  9. Bezzo, N., Hecker, J. P., Stolleis, K., Moses, M. E., & Fierro, R. (2015). Exploiting heterogeneous robotic systems in cooperative missions (pp. 1–23). arXiv:1509.00948.
  10. Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.CrossRefGoogle Scholar
  11. Brooks, R. A., & Flynn, A. M. (1989). Fast, cheap and out of control: A robot invasion of the solar system. Journal of the British Interplanetary Society, 42, 478–485.Google Scholar
  12. Brown, J. H., Burnside, W. R., Davidson, A. D., DeLong, J. P., Dunn, W. C., Hamilton, M. J., et al. (2011). Energetic limits to economic growth. BioScience, 61(1), 19–26.CrossRefGoogle Scholar
  13. Camazine, S., Franks, N. R., Sneyd, J., Bonabeau, E., Deneubourg, J. L., & Theraula, G. (2001). Self-organization in biological systems. Princeton, NJ: Princeton University Press.zbMATHGoogle Scholar
  14. Campo, A., Gutiérrez, Á., Nouyan, S., Pinciroli, C., Longchamp, V., Garnier, S., et al. (2010). Artificial pheromone for path selection by a foraging swarm of robots. Biological Cybernetics, 103(5), 339–352.CrossRefGoogle Scholar
  15. Chapman, C. A., Chapman, L. J., & McLaughlin, R. L. (1989). Multiple central place foraging by spider monkeys: Travel consequences of using many sleeping sites. Oecologia, 79(4), 506–511.CrossRefGoogle Scholar
  16. Couture-Beil, A. & Vaughan, R. T. (2009). Adaptive mobile charging stations for multi-robot systems. In 2009 IEEE/RSJ international conference on intelligent robots and systems (pp. 1363–1368).Google Scholar
  17. Crist, T. O., & MacMahon, J. A. (1991). Individual foraging components of harvester ants: Movement patterns and seed patch fidelity. Insectes Sociaux, 38(4), 379–396.CrossRefGoogle Scholar
  18. Fewell, J. H. (1990). Directional fidelity as a foraging constraint in the western harvester ant, pogonomyrmex occidentalis. Oecologia, 82(1), 45–51.CrossRefGoogle Scholar
  19. Fink, W., Dohm, J. M., Tarbell, M. A., Hare, T. M., & Baker, V. R. (2005). Next-generation robotic planetary reconnaissance missions: A paradigm shift. Planetary and Space Science, 53(14–15), 1419–1426.CrossRefGoogle Scholar
  20. Flanagan, T. P., Letendre, K., Burnside, W., Fricke, G. M., & Moses, M. E. (2011). How ants turn information into food. In 2011 IEEE symposium on artificial life (ALIFE) (pp. 178–185). IEEE.Google Scholar
  21. Flanagan, T. P., Letendre, K., Burnside, W. R., Fricke, G. M., & Moses, M. E. (2012). Quantifying the effect of colony size and food distribution on harvester ant foraging. PLOS ONE, 7(7), 1–9.Google Scholar
  22. Flanagan, T. P., Pinter-Wollman, N. M., Moses, M. E., & Gordon, D. M. (2013). Fast and flexible: Argentine ants recruit from nearby trails. PLOS ONE, 8(8), 1–7.CrossRefGoogle Scholar
  23. Fricke, G. M., Hecker, J. P., Griego, A. D., Tran, L. T., & Moses, E. M. (2016). A distributed deterministic spiral search algorithm for swarms. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2016).Google Scholar
  24. Gazi, V., & Passino, K. M. (2004). Stability analysis of social foraging swarms. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 34(1), 539–557.CrossRefGoogle Scholar
  25. Gordon, D. M., & Kulig, A. W. (1996). Founding, foraging, and fighting: Colony size and the spatial distribution of harvester ant nests. Ecological Society of America, 77(8), 2393–2409.Google Scholar
  26. Halász, Á., Hsieh, M. A., Berman, S., & Kumar, V. (2007). Dynamic redistribution of a swarm of robots among multiple sites. In 2007 IEEE/RSJ international conference on intelligent robots and systems (pp. 2320–2325).Google Scholar
  27. Hecker, J. P., Carmichael, J. C., & Moses, M. E. (2015). Exploiting clusters for complete resource collection in biologically-inspired robot swarms. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 434–440).Google Scholar
  28. Hecker, J. P., & Moses, M. E. (2015). Beyond pheromones: Evolving error-tolerant, flexible, and scalable ant-inspired robot swarms. Swarm Intelligence, 9(1), 43–70.Google Scholar
  29. Hecker, J. P., Stolleis, K., Swenson, B., Letendre, K., & Moses, M. E. (2013). Evolving error tolerance in biologically inspired iant robots. In In ECAL 2013.Google Scholar
  30. Hölldobler, B. (1976). Recruitment behavior, home range orientation and territoriality in harvester ants, pogonomyrmex. Behavioral Ecology and Sociobiology, 1(1), 3–44.CrossRefGoogle Scholar
  31. Hou, C., Kaspari, M., Zanden, H. V., & Gillooly, J. (2010). Energetic basis of colonial living in social insects. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3634–3638.CrossRefGoogle Scholar
  32. Hsieh, M. A., Halász, Á., Berman, S., & Kumar, V. (2008). Biologically inspired redistribution of a swarm of robots among multiple sites. Swarm Intelligence, 2(2), 121–141.CrossRefGoogle Scholar
  33. Jackson, D. E., Martin, S. J., Ratnieks, F. L. W., & Holcombe, M. (2007). Spatial and temporal variation in pheromone composition of ant foraging trails. Behavioral Ecology, 18(2), 444–450.CrossRefGoogle Scholar
  34. Kleinberg, J. (2007). Computing: The wireless epidemic. Nature, 449(7160), 287–288.CrossRefGoogle Scholar
  35. Koenig, N., & Howard, A. (2004). Design and use paradigms for gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ international conference on intelligent robots and systems, 2004 (IROS 2004). Proceedings (Vol. 3, pp. 2149–2154). IEEE.Google Scholar
  36. Lanan, M. (2014). Spatiotemporal resource distribution and foraging strategies of ants (hymenoptera: Formicidae). Myrmecological news/Osterreichische Gesellschaft fur Entomofaunistik, 20, 53–70.Google Scholar
  37. Landis, G. A. (2004). Robots and humans: Synergy in planetary exploration. Acta Astronautica, 55(12), 985–990.CrossRefGoogle Scholar
  38. Lein, A. & Vaughan, R. T. (2009). Adapting to non-uniform resource distributions in robotic swarm foraging through work-site relocation. In 2009 IEEE/RSJ international conference on intelligent robots and systems (pp. 601–606).Google Scholar
  39. Levin, D. F. (2016). The environment constrains successful search strategies in natural distributed systems. Ph.D. Thesis, University of New Mexico.Google Scholar
  40. Liu, W., & Winfield, A. F. T. (2010). Modeling and optimization of adaptive foraging in swarm robotic systems. International Journal of Robotics Research, 29(14), 1743–1760.CrossRefGoogle Scholar
  41. Lu, Q., Hecker, J. P., & Moses, E. M. (2016a). The MPFA: A multiple-place foraging algorithm for biologically-inspired robot swarms. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2016).Google Scholar
  42. Lu, Q., Moses, M., & Hecker, J. (2016b). A scalable and adaptable multiple-place foraging algorithm for ant-inspired robot swarms. arxiv.org/abs/1612.00480.
  43. Moses, M. & Banerjee, S. (2011). Biologically inspired design principles for scalable, robust, adaptive, decentralized search and automated response (radar). In 2011 IEEE symposium on artificial life (ALIFE) (pp. 30–37). IEEE.Google Scholar
  44. Moses, M., Bezerra, G., Edwards, B., Brown, J., & Forrest, S. (2016). Energy and time determine scaling in biological and computer designs. Philosophical Transactions of the Royal Society B, 371(1701), 20150446.CrossRefGoogle Scholar
  45. Moses, M. E., & Brown, J. H. (2003). Allometry of human fertility and energy use. Ecology Letters, 6(4), 295–300.CrossRefGoogle Scholar
  46. Moyron-Quiroz, J. E., Rangel-Moreno, J., Kusser, K., Hartson, L., Sprague, F., Goodrich, S., et al. (2004). Role of inducible bronchus associated lymphoid tissue (ibalt) in respiratory immunity. Nature Medicine, 10(9), 927–934.CrossRefGoogle Scholar
  47. Nelson, A., Grant, E., & Henderson, T. (2004). Evolution of neural controllers for competitive game playing with teams of mobile robots. Robotics and Autonomous Systems, 46(3), 135–150.CrossRefGoogle Scholar
  48. Nouyan, S., Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2009). Teamwork in self-organized robot colonies. IEEE Transactions on Evolutionary Computation, 13(4), 695–711.CrossRefGoogle Scholar
  49. Nurzaman, S. G., Matsumoto, Y., Nakamura, Y., Koizumi, S., & Ishiguro, H. (2009). Biologically inspired adaptive mobile robot search with and without gradient sensing. In 2009 IEEE/RSJ international conference on intelligent robots and systems.Google Scholar
  50. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2012). Argos: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6, 271–295.CrossRefGoogle Scholar
  51. Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., et al. (2009). Ros: An open-source robot operating system. In ICRA workshop on open source software.Google Scholar
  52. Ritchie, M. E. (2009). Scale, heterogeneity, and the structure and diversity of ecological communities. Berlin, Boston: Princeton University Press.CrossRefGoogle Scholar
  53. Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of application. Swarm robotics: SAB 2004 international workshop (Vol. 3342, pp. 10–20).Google Scholar
  54. Savage, V. M., Deeds, E. J., & Fontana, W. (2008). Sizing up allometric scaling theory. PLOS Computational Biology, 4(9), 1–17.MathSciNetCrossRefGoogle Scholar
  55. Schmolke, A. (2009). Benefits of dispersed centralplace foraging: An individualbased model of a polydomous ant colony. The American Naturalist, 173(6), 772–778.CrossRefGoogle Scholar
  56. Sebbane, Y. B. (2012). Lighter than air robots: Guidance and control of autonomous airships (p. 58). Dordrecht: Springer.CrossRefzbMATHGoogle Scholar
  57. Secor, P. (2016). Nasa swarmathon. http://www.nasaswarmathon.com/.
  58. Singh, M. K., & Parhi, D. R. (2011). Path optimisation of a mobile robot using an artificial neural network controller. International Journal Systems Science, 42(1), 107–120.MathSciNetCrossRefzbMATHGoogle Scholar
  59. Sumpter, D. J., & Beekman, M. (2003). From nonlinearity to optimality: Pheromone trail foraging by ants. Animal Behaviour, 66(2), 273–280.CrossRefGoogle Scholar
  60. Tindo, M., Kenne, M., & Dejean, A. (2008). Advantages of multiple foundress colonies in belonogaster juncea juncea l.: Greater survival and increased productivity. Ecological Entomology, 33(2), 293–297.CrossRefGoogle Scholar
  61. Wall, M. (1996). GAlib: A C++ library of genetic algorithm components (Vol. 87). Cambridge: Mechanical Engineering Department, Massachusetts Institute of Technology.Google Scholar
  62. West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276(5309), 122–126.CrossRefGoogle Scholar
  63. Winfield, A. F. T. (2009). Foraging Robots (pp. 3682–3700). New York, NY: Springer.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Moses Biological Computation Laboratory, Department of Computer ScienceUniversity of New MexicoAlbuquerqueUSA
  2. 2.Santa Fe InstituteSanta FeUSA

Personalised recommendations