Autonomous Robots

, Volume 42, Issue 6, pp 1207–1230 | Cite as

Competitive target search with multi-agent teams: symmetric and asymmetric communication constraints

Article
  • 85 Downloads

Abstract

We study a search game in which two multi-agent teams compete to find a stationary target at an unknown location. Each team plays a mixed strategy over the set of search sweep-patterns allowed from its respective random starting locations. Assuming that communication enables cooperation we find closed-form expressions for the probability of winning the game as a function of team sizes and the existence or absence of communication within each team. Assuming the target is distributed uniformly at random, an optimal mixed strategy equalizes the expected first-visit time to all points within the search space. The benefits of communication enabled cooperation increase with team size. Simulations and experiments agree well with analytical results.

Keywords

Multi-agent system Competitive search Search and rescue Search game 

Notes

Acknowledgements

We would like to thank Colin Ward, Corbin Wilhelmi, and Cyrus Vorwald for their help in facilitating the mixed platform experiments.

Supplementary material

References

  1. Beard, R. W., & McLain, T. W. (2003). Multiple uav cooperative search under collision avoidance and limited range communication constraints. In Proceedings of 42nd IEEE conference on decision and control, 2003, Vol. 1, pp. 25–30Google Scholar
  2. Bertuccelli, L. F., & How, J. P. (2005). Robust UAV search for environments with imprecise probability maps. In 44th IEEE conference on decision and control, 2005 and 2005 European control conference. CDC-ECC ’05, pp. 5680–5685,  https://doi.org/10.1109/CDC.2005.1583068
  3. Bhattacharya, S., Khanafer, A., & Başar, T. (2016). A double-sided jamming game with resource constraints. Springer International Publishing, pp. 209–227Google Scholar
  4. Chandler, P., & Pachter, M. (2001). Hierarchical control for autonomous teams. In Proceedings of the AIAA guidance, navigation, and control conference, pp. 632–642Google Scholar
  5. Choset, H., & Pignon, P. (1998). Coverage path planning: The boustrophedon cellular decomposition. In Field and service robotics (pp. 203–209). SpringerGoogle Scholar
  6. Chung, T. H., Hollinger, G. A., & Isler, V. (2011). Search and pursuit-evasion in mobile robotics. Autonomous Robots, 31(4), 299–316.CrossRefGoogle Scholar
  7. Demaine, E. D., Fekete, S. P., & Gal, S. (2006). Online searching with turn cost. Theoretical Computer Science, 361(2), 342–355.MathSciNetCrossRefMATHGoogle Scholar
  8. Dias, M. B. (2004). Traderbots: A new paradigm for robust and efficient multirobot coordination in dynamic environments. PhD thesis, Carnegie Mellon University PittsburghGoogle Scholar
  9. Dias, M. B., Zlot, R., Kalra, N., & Stentz, A. (2006). Market-based multirobot coordination: A survey and analysis. Proceedings of the IEEE, 94(7), 1257–1270.CrossRefGoogle Scholar
  10. Feinerman, O., Korman, A., Lotker, Z., Sereni, J. S. (2012). Collaborative search on the plane without communication. In Proceedings of the 2012 ACM symposium on principles of distributed computing, PODC ’12 (pp. 77–86). ACM, New York  https://doi.org/10.1145/2332432.2332444,
  11. Flint, M., Polycarpou, M., & Fernandez-Gaucherand, E. (2002). Cooperative control for multiple autonomous uav’s searching for targets. In Proceedings of the 41st IEEE Conference on Decision and Control, Vol. 3, pp. 2823–2828Google Scholar
  12. Forsmo, E. J., Grotli, E. I., Fossen, T. I., & Johansen, T. A. (2013). Optimal search mission with unmanned aerial vehicles using mixed integer linear programming. In International conference on unmanned aircraft systems (ICUAS), pp. 253–259,  https://doi.org/10.1109/ICUAS.2013.6564697
  13. Gerkey, B. P., Thrun, S., & Gordon, G. (2005). Parallel stochastic hill-climbing with small teams. In Multi-robot systems. From swarms to intelligent automata Volume III (pp. 65–77). SpringerGoogle Scholar
  14. Hollinger, G. A., Yerramalli, S., Singh, S., Mitra, U., & Sukhatme, G. S. (2015). Distributed data fusion for multirobot search. IEEE Transactions on Robotics, 31(1), 55–66.CrossRefGoogle Scholar
  15. Hopcroft, J. E., & Karp, R. M. (1971). A n5/2 algorithm for maximum matchings in bipartite. In IEEE 12th annual symposium on switching and automata theory, pp. 122–125Google Scholar
  16. Hu, J., Xie, L., Lum, K. Y., & Xu, J. (2013). Multiagent information fusion and cooperative control in target search. IEEE Transactions on Control Systems Technology, 21(4), 1223–1235.  https://doi.org/10.1109/TCST.2012.2198650.CrossRefGoogle Scholar
  17. Huang, A. S., Olson, E., & Moore, D. C. (2010). Lcm: Lightweight communications and marshalling. In IEEE/RSJ international conference on, intelligent robots and systems (IROS), pp. 4057–4062Google Scholar
  18. Huang, H., Ding, J., Zhang, W., & Tomlin, C. J. (2015). Automation-assisted capture-the-flag: A differential game approach. IEEE Transactions on Control Systems Technology, 23(3), 1014–1028.CrossRefGoogle Scholar
  19. Kim, M. H., Baik, H., & Lee, S. (2013). Response threshold model based uav search planning and task allocation. Journal of Intelligent & Robotic Systems, 75(3), 625–640.  https://doi.org/10.1007/s10846-013-9887-6.Google Scholar
  20. Koopman, B. (1956). The theory of search. II Target detection. Operations Research, 4(5), 503–531.MathSciNetCrossRefGoogle Scholar
  21. Kwak, D. J., & Kim, H. J. (2014). Policy improvements for probabilistic pursuit-evasion game. Journal of Intelligent & Robotic Systems, 74(3–4), 709–724.  https://doi.org/10.1007/s10846-013-9857-z.CrossRefGoogle Scholar
  22. Lynen, S., Achtelik, M. W., Weiss, S., Chli, M., Siegwart, R. (2013). A robust and modular multi-sensor fusion approach applied to mav navigation. In 2013 IEEE/RSJ international conference on intelligent robots and systems, pp. 3923–3929Google Scholar
  23. Mangel, M. (1989). Marcel Dekker, New YorkGoogle Scholar
  24. Noori, N., & Isler, V. (2013). Lion and man with visibility in monotone polygons. The International Journal of Robotics Research p 0278364913498291Google Scholar
  25. Otte, M., Kuhlman, M., & Sofge, D. (2016). Competitive two team target search game with communication symmetry and asymmetry. In International workshop on the algorithmic foundations of robotics (WAFR), San Francisco, USAGoogle Scholar
  26. Sato, H., & Royset, J. O. (2010). Path optimization for the resource-constrained searcher. Naval Research Logistics (NRL), 57(5), 422–440.MathSciNetMATHGoogle Scholar
  27. Spieser, K., & Frazzoli, E. (2012). The cow-path game: A competitive vehicle routing problem. In IEEE 51st annual conference on decision and control (CDC), pp. 6513–6520Google Scholar
  28. Spires, S. V., & Goldsmith, S. Y. (1998). Exhaustive geographic search with mobile robots along space-filling curves. In Collective robotics (pp. 1–12). SpringerGoogle Scholar
  29. Sujit, P. B., & Ghose, D. (2004). Multiple agent search of an unknown environment using game theoretical models. In Proceedings of the American control conference, 2004, Vol. 6, pp. 5564–5569Google Scholar
  30. Sujit, P. B., & Ghose, D. (2009). Negotiation schemes for multi-agent cooperative search. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 223(6), 791–813.CrossRefGoogle Scholar
  31. Sydney, N., Paley, D. A., Sofge, D. (2015). Physics-inspired motion planning for information-theoretic target detection using multiple aerial robots. Autonomous Robots pp 1–11Google Scholar
  32. Trummel, K., & Weisinger, J. (1986). Technical note the complexity of the optimal searcher path problem. Operations Research, 34(2), 324–327.MathSciNetCrossRefMATHGoogle Scholar
  33. Vidal, R., Shakernia, O., Kim, H. J., Shim, D. H., & Sastry, S. (2002). Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation. IEEE Transactions on Robotics and Automation 18(5):662–669,  https://doi.org/10.1109/TRA.2002.804040
  34. Vincent, P., & Rubin, I. (2004). A framework and analysis for cooperative search using uav swarms. In Proceedings of the 2004 ACM symposium on applied computing, SAC ’04. ACM, New York, pp. 79–86,  https://doi.org/10.1145/967900.967919,
  35. Waharte, S., & Trigoni, N. (2010). Supporting search and rescue operations with uavs. In International conference on emerging security technologies (EST), 2010, pp. 142–147Google Scholar
  36. Zhu, M., Frazzoli, E. (2012). On competitive search games for multiple vehicles. In IEEE 51st annual conference on decision and control (CDC), 2012, pp. 5798–5803,  https://doi.org/10.1109/CDC.2012.6426371

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.U.S. Naval Research LaboratoryWashingtonUSA
  2. 2.University of MarylandCollege ParkUSA

Personalised recommendations