Advertisement

Autonomous Robots

, Volume 42, Issue 6, pp 1151–1167 | Cite as

Gaussian process for 6-DoF rigid motions

  • Muriel Lang
  • Martin Kleinsteuber
  • Sandra Hirche
Article
  • 363 Downloads

Abstract

Data-driven modeling approaches receive significant attention in robotics as they are capable of representing system behavior to which first-order principles cannot be employed. Modeling of human motions, based on observations is one of the many application areas. So far, however, the available probabilistic approaches cannot handle dynamics evolving in the space of rigid motions, as rotations are not appropriately considered. In this article, we present a mathematical framework for Gaussian process modeling, where the valid input domain is generalized to full rigid motions, namely the special Euclidean group SE(3). The kernel functions inside the Gaussian process are modified to exploit properties of the input data representation by dual quaternions. We further prove that the presented covariance functions maintain the Gaussian process properties. The correctness and accuracy of our approach is validated on simulated and real human motion data. We analyze the estimation performance of the novel Gaussian process framework in comparison to state of the art techniques, and show significantly improved model behavior of rigid motions.

Keywords

Gaussian process Data-driven modelling Nonlinear dynamics Dual quaternions Covariance function Special Euclidean group Rigid motion dynamics Manifold modelling 

Notes

Acknowledgements

The research leading to these results has received funding from the ERC Starting Grant “Control based on Human Models (con-humo)” under Grant agreement n\(^\circ \) 337654 and from the European Union Seventh Framework Programme FP7/ 2007–2013 under Grant agreement n\(^\circ \) 601165 of the project “WEARHAP—WEARable HAPtics for humans and robots”.

References

  1. Ata, E., & Yayli, Y. (2008). Dual unitary matrices and unit dual quaternions. Differential Geometry-Dynamical Systems, 10, 1–12.MathSciNetzbMATHGoogle Scholar
  2. Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15, 1373–1396.CrossRefzbMATHGoogle Scholar
  3. Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.zbMATHGoogle Scholar
  4. Calandra, R., Peters, J., Rasmussen, C. E., & Deisenroth, M. P. (2014). Manifold gaussian processes for regression. arXiv preprint arXiv:1402.5876.
  5. Corteville, B., Aertbelien, E., Bruyninckx, H., De Schutter, J., & Van Brussel, H. (2007). Human-inspired robot assistant for fast point-to-point movements. In: IEEE International Conference on Robotics and Automation, pp. 3639–3644.Google Scholar
  6. Del Castillo, E., Colosimo, B. M., & Tajbakhsh, S. D. (2015). Geodesic gaussian processes for the parametric reconstruction of a free-form surface. Technometrics, 57(1), 87–99.MathSciNetCrossRefGoogle Scholar
  7. Fukumizu, K., Gretton, A., Schölkopf, B., & Sriperumbudur, B. K. (2009). Characteristic kernels on groups and semigroups. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Adv Neural Inf Process Syst (pp. 473–480). Brooklyn: Curran Associates Inc.Google Scholar
  8. Ham, J., Lee, D. D., Mika, S., & Schölkopf, B. (2004). A kernel view of the dimensionality reduction of manifolds. In: Proceedings of the Twenty-first International Conference on Machine Learning (p. 47). ACM, New York, NY, USA, ICML ’04.  https://doi.org/10.1145/1015330.1015417.
  9. Harandi, M. T., Salzmann, M., & Porikli, F. (2014). Bregman divergences for infinite dimensional covariance matrices. CoRR (abs/1403.4334).Google Scholar
  10. Jarrasse, N., Paik, J., Pasqui, V., & Morel, G. (2008). How can human motion prediction increase transparency? In IEEE International Conference on Robotics and Automation, pp. 2134–2139.Google Scholar
  11. Jayasumana, S., Hartley, R., Salzmann, M., Li, H., & Harandi, M. (2013). Kernel methods on the riemannian manifold of symmetric positive definite matrices. In 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 73–80.  https://doi.org/10.1109/CVPR.2013.17.
  12. Kang, H., & Park, F. C. (2015). Motion optimization using gaussian process dynamical models. Multibody System Dynamics, 34(4), 307–325.  https://doi.org/10.1007/s11044-014-9441-8.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Khansari-Zadeh, S., & Billard, A. (2011). Learning stable nonlinear dynamical systems with gaussian mixture models. IEEE Transactions on Robotics, 27(5), 943–957.CrossRefGoogle Scholar
  14. Kim, S., & Billard, A. (2012). Estimating the non-linear dynamics of free-flying objects. Robotics and Autonomous Systems, 60(9), 1108–1122.CrossRefGoogle Scholar
  15. Ko, J., & Fox, D. (2008). Gp-bayesfilters: Bayesian filtering using gaussian process prediction and observation models. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008 (pp. 3471–3476). IROS 2008.  https://doi.org/10.1109/IROS.2008.4651188.
  16. Kulić, D., Takano, W., & Nakamura, Y. (2007). Incremental learning of full body motions via adaptive factorial hidden markov models. In 7th International Conference on Epigenetic Robotics.Google Scholar
  17. Lang, M. (2011). Approximation of probability density functions on the Euclidean group parametrized by dual quaternions. arxiv preprint, arxiv:1707.00532. Ludwig-Maximilians-Universität München. https://arxiv.org/abs/1707.00532
  18. Lang, M., & Feiten, W. (2012). Mpg—Fast forward reasoning on 6 dof pose uncertainty. In 7th German Conference on Robotics; Proceedings of ROBOTIK 2012, pp. 1–6.Google Scholar
  19. Lang, M., & Hirche, S. (2017). Computationally efficient rigid-body Gaussian process for motion dynamics. IEEE Robotics and Automation Letters, 2(3), 1601–1608.  https://doi.org/10.1109/LRA.2017.2677469.CrossRefGoogle Scholar
  20. Lang, M., Dunkley, O., & Hirche, S. (2014). Gaussian process kernels for rotations and 6d rigid body motions. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5165–5170.  https://doi.org/10.1109/ICRA.2014.6907617.
  21. Lang, M., Kleinsteuber, M., Dunkley, O., & Hirche, S. (2015). Gaussian process dynamical models over dual quaternions. In European Control Conference (ECC), Linz, Austria.Google Scholar
  22. Matsuoka, Y., Durrant-Whyte, H., & Neira, J. (2011). Robotics: Science and systems VI. Cambridge: The MIT Press.zbMATHGoogle Scholar
  23. Medina, J. R., Lawitzky, M., Mörtl, A., Lee, D., & Hirche, S. (2011). An experience-driven robotic assistant acquiring human knowledge to improve haptic cooperation. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2416–2422.Google Scholar
  24. Miossec, S., & Kheddar, A. (2008). Human motion in cooperative tasks: Moving object case study. In IEEE International Conference on Robotics and Biomimetics, ROBIO, pp. 1509–1514.  https://doi.org/10.1109/ROBIO.2009.4913224.
  25. Nilsson, J., Sha, F., & Jordan, M. I. (2007). Regression on manifolds using kernel dimension reduction. In Proceedings of the 24th International Conference on Machine Learning (pp. 697–704). ACM, New York, NY, USA, ICML ’07.  https://doi.org/10.1145/1273496.1273584.
  26. Rasmussen, C. E., & Nickisch, H. (2010). Gaussian processes for machine learning (gpml) toolbox. Journal of Machine Learning Research, 11, 3011–3015.MathSciNetzbMATHGoogle Scholar
  27. Rasmussen, C. E., & Williams, C. K. (2006). Gaussian Processes for machine learning. Adaptative computation and machine learning series, University Press Group Limited.Google Scholar
  28. Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326.  https://doi.org/10.1126/science.290.5500.2323.CrossRefGoogle Scholar
  29. Sebanz, N., & Knoblich, G. (2009). Prediction in joint action: What, when, and where. Topics in Cognitive Science, 1(2), 353–367.  https://doi.org/10.1111/j.1756-8765.2009.01024.x.CrossRefGoogle Scholar
  30. Subbarao, R. (2008). Robust statistics over riemannian manifolds for computer vision. Ph.D. thesis, Rutgers University; Graduate School—New Brunswick.  https://doi.org/10.7282/T3736R88.
  31. Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319.CrossRefGoogle Scholar
  32. Thomas, F. (2014). Approaching dual quaternions from matrix algebra. IEEE Transactions on Robotics, 30(5), 1037–1048.  https://doi.org/10.1109/TRO.2014.2341312.CrossRefGoogle Scholar
  33. Urtasun, R., Fleet, D., Geiger, A., Popovic, J., Darrell, T., & Lawrence, N. (2008). Topologically-constrained latent variable models. In International Conference on Machine learning (ICML).Google Scholar
  34. Van Vaerenbergh, S., Lazaro-Gredilla, M., & Santamaria, I. (2012). Kernel recursive least-squares tracker for time-varying regression. IEEE Transactions on Neural Networks and Learning Systems, 23(8), 13131326.  https://doi.org/10.1109/tnnls.2012.2200500.Google Scholar
  35. Wang, J. M., Fleet, D. J., & Hertzmann, A. (2008). Gaussian process dynamical models for human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 283–298.CrossRefGoogle Scholar
  36. Zhang, D., Chen, X., & Lee, W. S. (2005). Text classification with kernels on the multinomial manifold. In SIGIR ’05: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 266–273). ACM Press, New York, NY, USA.  https://doi.org/10.1145/1076034.1076081.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringTechnical University MunichMunichGermany

Personalised recommendations