Skip to main content
Log in

Chance-constrained target tracking using sensors with bounded fan-shaped sensing regions

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

We present a robust target tracking algorithm for a mobile robot. It is assumed that a mobile robot carries a sensor with a fan-shaped field of view and finite sensing range. The goal of the proposed tracking algorithm is to minimize the probability of losing a target. If the distribution of the next position of a moving target is available as a Gaussian distribution from a motion prediction algorithm, the proposed algorithm can guarantee the tracking success probability. In addition, the proposed method minimizes the moving distance of the mobile robot based on the chosen bound on the tracking success probability. While the considered problem is a non-convex optimization problem, we derive a closed-form solution when the heading is fixed and develop a real-time algorithm for solving the considered target tracking problem. We also present a robust target tracking algorithm for aerial robots in 3D. The performance of the proposed method is evaluated extensively in simulation. The proposed algorithm has been successful applied in field experiments using Pioneer mobile robot with a Microsoft Kinect sensor for following a pedestrian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. http://msdn.microsoft.com/en-us/library/hh973074.aspx.

  2. Vicon MX motion capture system. Available at http://www.vicon.com/.

  3. To generate the same walking pattern for all 10 trials, we slow down all the settings of the system.

  4. http://www.ros.org.

References

  • Bandyopadhyay, T., Yuanping, L., Ang, M.H., Jr. & Hsu, D. (2006). A greedy strategy for tracking a locally predictable target among obstacles. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)

  • Bandyopadhyay, T., Hsu, D., & Ang, M. H, Jr. (2009a). Motion strategies for people tracking in cluttered and dynamic environments. Experimental robotics, springer tracts in advanced robotics (Vol. 54, pp. 463–472). Berlin: Springer.

    Google Scholar 

  • Bandyopadhyay, T., Rong, N., Ang, M., Hsu, D., & Lee, W. S. (2009b). Motion planning for people tracking in uncertain and dynamic environments. In Workshop on People Detection and Tracking, IEEE International Conference on Robotics and Automation (ICRA)

  • Başar, T., & Bernhard, P. (2008). H-infinity optimal control and related minimax design problems: A dynamic game approach. Berlin: Springer.

    MATH  Google Scholar 

  • Becker, C., Gonzlez-Baos, H., Latombe, J. C., & Tomasi, C. (1995). An intelligent observer. In International Symposium on Experimental Robotics (pp. 94–99).

  • Belkhouche, F., Belkhouche, B., & Rastgoufard, P. (2007). Parallel navigation for reaching a moving goal by a mobile robot. Robotica, 25, 63–74. doi:10.1017/S0263574706002992.

    Article  Google Scholar 

  • Bhattacharya, S., & Hutchinson, S. (2010). On the existence of nash equilibrium for a two player Pursuit–Evasion game with visibility constraints. Berlin: Springer.

    MATH  Google Scholar 

  • Bhattacharya, S., Candido, S., & Hutchinson, S. (2007). Motion strategies for surveillance. In Proceedings of Robotics: Science and Systems.

  • Blackmore, L., & Ono, M. (2009). Convex chance constrained predictive control without sampling. In Proceedings of the AIAA Guidance, Navigation and Control Conference.

  • Blackmore, L., Li, H., & Williams, B. (2006). A probabilistic approach to optimal robust path planning with obstacles. In 2006 American Control Conference. doi:10.1109/ACC.2006.1656653

  • Choi, H., & Kim, Y. (2014). UAV guidance using a monocular-vision sensor for aerial target tracking. Control Engineering Practice, 22, 10–19.

    Article  Google Scholar 

  • Choi, S., Kim, E., & Oh, S. (2014). Real-time navigation in crowded dynamic environments using gaussian process motion control. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).

  • Frew, E., & Rock, S. (2003). Trajectory generation for constant velocity target motion estimation using monocular vision. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).

  • Gonzalez-Banos, H., Lee, C.-Y., & Latombe, J.-C. (2002). Real-time combinatorial tracking of a target moving unpredictably among obstacles. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)

  • Hirai, N., & Mizoguchi, H. (2003). Visual tracking of human back and shoulder for person following robot. In Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003) (Vol. 1).

  • Jia, Z., Balasuriya, A., & Challa, S. (2006). Recent developments in vision based target tracking for autonomous vehicles navigation. In 2006 IEEE Intelligent Transportation Systems Conference.

  • Kanayama, Y., Kimura, Y., Miyazaki, F., & Noguchi, T. (1991). A stable tracking control method for a non-holonomic mobile robot. In IEEE/RSJ International Workshop on Intelligent Robots and Systems.

  • Kunwar, F., Wong, F., Mrad, R., & Benhabib, B. (2006). Guidance-based on-line robot motion planning for the interception of mobile targets in dynamic environments. Journal of Intelligent and Robotic Systems, 47(4), 341–360.

    Article  Google Scholar 

  • Kwon, H., Yoon, Y., Park, J. B., & Kak, A. C. (2005). Person tracking with a mobile robot using two uncalibrated independently moving cameras. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

  • LaValle, S., Gonzalez-Banos, H., Becker, C., & Latombe, J.-C. (1997). Motion strategies for maintaining visibility of a moving target. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).

  • Lee, C.-Y., Gonzalez-Banos, H., & Latombe, J.-C. (2002). Real-time tracking of an unpredictable target amidst unknown obstacles. In 7th International Conference on Control, Automation, Robotics and Vision (ICARCV)

  • Liu, S.-C., Tan, D.-L., & Liu, G.-J. (2007). Robust leader-follower formation control of mobile robots based on a second order kinematics model. Acta Automatica Sinica, 33(9), 947–955.

    Article  MathSciNet  MATH  Google Scholar 

  • Luders, B., Kothari, M., & How, J. P. (2010). Chance constrained RRT for probabilistic robustness to environmental uncertainty. In AIAA Guidance, Navigation, and Control Conference.

  • Masehian, E., & Katebi, Y. (2014). Sensor-based motion planning of wheeled mobile robots in unknown dynamic environments. Journal of Intelligent and Robotic Systems, 74(3–4), 893–914. doi:10.1007/s10846-013-9837-3.

    Article  Google Scholar 

  • Muppirala, T., Hutchinson, S., & Murrieta-Cid, R. (2005). Optimal motion strategies based on critical events to maintain visibility of a moving target. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).

  • Murrieta-Cid, R., Munoz-Gomez, L., Alencastre-Miranda, M., Sarmiento, A., Kloder, S., Hutchinson, S., Lamiraux, F., & Laumond, J. P. (2005a). Maintaining visibility of a moving holonomic target at a fixed distance with a non-holonomic robot. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

  • Murrieta-Cid, R., Tovar, B., & Hutchinson, S. (2005b). A sampling-based motion planning approach to maintain visibility of unpredictable targets. Autonomous Robots, 19(3), 285–300.

    Article  Google Scholar 

  • Murrieta-Cid, R., Muppirala, T., Sarmiento, A., Bhattacharya, S., & Hutchinson, S. (2007). Surveillance strategies for a pursuer with finite sensor range. The International Journal of Robotics Research, 26(3), 233–253. doi:10.1177/0278364907077083.

    Article  Google Scholar 

  • Murrieta-Cid, R., Ruiz, U., Marroquin, J. L., Laumond, J.-P., & Hutchinson, S. (2011). Tracking an omnidirectional evader with a differential drive robot. Autonomous Robots, 31(4), 345. doi:10.1007/s10514-011-9246-z.

    Article  Google Scholar 

  • Oh, Y., Choi, S., & Oh, S. (2015). Chance-constrained target tracking for mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).

  • Panagou, D., & Kumar, V. (2014). Cooperative visibility maintenance for leader follower formations in obstacle environments. IEEE Transactions on Robotics, 30(4), 831–844. doi:10.1109/TRO.2014.2304774.

    Article  Google Scholar 

  • Roussos, G., & Kyriakopoulos, K. (2009). Towards constant velocity navigation and collision avoidance for autonomous nonholonomic aircraft-like vehicles. In Proceedings of the IEEE Conference on Decision and Control.

  • Schneider, D. (2015). Flying selfie bots. IEEE Spectrum, 52(1), 49–51. doi:10.1109/MSPEC.2015.6995634.

    Article  Google Scholar 

  • Shkurti, F., & Dudek, G. (2014). Maximizing visibility in collaborative trajectory planning. In 2014 IEEE International Conference on Robotics and Automation (ICRA). doi:10.1109/ICRA.2014.6907405

  • Trahanias, P., Burgard, W., Argyros, A., Hahnel, D., Baltzakis, H., Pfaff, P., et al. (2005). TOURBOT and WebFAIR: Web-operated mobile robots for tele-presence in populated exhibitions. IEEE Robotics Automation Magazine, 12(2), 77–89.

    Article  Google Scholar 

  • Tran, V.-H., & Lee, S.-G. (2011). A stable formation control using approximation of translational and angular accelerations. International Journal of Advanced Robotic Systems, 8(1), 65–75.

    Article  Google Scholar 

  • Wei, H., Lu, W., Zhu, P., Huang, G., Leonard, J., & Ferrari, S. (2014). Optimized visibility motion planning for target tracking and localization. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

  • Zhou, K., & Roumeliotis, S. (2011). Multirobot active target tracking with combinations of relative observations. IEEE Transactions on Robotics, 27(4), 678–695. doi:10.1109/TRO.2011.2114734.

    Article  Google Scholar 

Download references

Acknowledgements

This work was in part supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2017R1A2B2006136). The smart shopping cart experiment was made possible by contributions of Jinyoung Choi and Sunwoo Lee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songhwai Oh.

Additional information

A preliminary version of this work appeared in Oh et al. (2015).

This is one of several papers published in Autonomous Robots comprising the Special Issue on Active Perception.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 9815 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, Y., Choi, S. & Oh, S. Chance-constrained target tracking using sensors with bounded fan-shaped sensing regions. Auton Robot 42, 307–327 (2018). https://doi.org/10.1007/s10514-017-9656-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-017-9656-7

Keywords

Navigation