Autonomous Robots

, Volume 42, Issue 2, pp 307–327 | Cite as

Chance-constrained target tracking using sensors with bounded fan-shaped sensing regions

  • Yoonseon Oh
  • Sungjoon Choi
  • Songhwai OhEmail author
Part of the following topical collections:
  1. Active Perception


We present a robust target tracking algorithm for a mobile robot. It is assumed that a mobile robot carries a sensor with a fan-shaped field of view and finite sensing range. The goal of the proposed tracking algorithm is to minimize the probability of losing a target. If the distribution of the next position of a moving target is available as a Gaussian distribution from a motion prediction algorithm, the proposed algorithm can guarantee the tracking success probability. In addition, the proposed method minimizes the moving distance of the mobile robot based on the chosen bound on the tracking success probability. While the considered problem is a non-convex optimization problem, we derive a closed-form solution when the heading is fixed and develop a real-time algorithm for solving the considered target tracking problem. We also present a robust target tracking algorithm for aerial robots in 3D. The performance of the proposed method is evaluated extensively in simulation. The proposed algorithm has been successful applied in field experiments using Pioneer mobile robot with a Microsoft Kinect sensor for following a pedestrian.


Chance-constrained optimization Robust target tracking Fan-shaped sensors 



This work was in part supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2017R1A2B2006136). The smart shopping cart experiment was made possible by contributions of Jinyoung Choi and Sunwoo Lee.

Supplementary material

10514_2017_9656_MOESM1_ESM.mp4 (9.6 mb)
Supplementary material 1 (mp4 9815 KB)


  1. Bandyopadhyay, T., Yuanping, L., Ang, M.H., Jr. & Hsu, D. (2006). A greedy strategy for tracking a locally predictable target among obstacles. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) Google Scholar
  2. Bandyopadhyay, T., Hsu, D., & Ang, M. H, Jr. (2009a). Motion strategies for people tracking in cluttered and dynamic environments. Experimental robotics, springer tracts in advanced robotics (Vol. 54, pp. 463–472). Berlin: Springer.Google Scholar
  3. Bandyopadhyay, T., Rong, N., Ang, M., Hsu, D., & Lee, W. S. (2009b). Motion planning for people tracking in uncertain and dynamic environments. In Workshop on People Detection and Tracking, IEEE International Conference on Robotics and Automation (ICRA) Google Scholar
  4. Başar, T., & Bernhard, P. (2008). H-infinity optimal control and related minimax design problems: A dynamic game approach. Berlin: Springer.zbMATHGoogle Scholar
  5. Becker, C., Gonzlez-Baos, H., Latombe, J. C., & Tomasi, C. (1995). An intelligent observer. In International Symposium on Experimental Robotics (pp. 94–99).Google Scholar
  6. Belkhouche, F., Belkhouche, B., & Rastgoufard, P. (2007). Parallel navigation for reaching a moving goal by a mobile robot. Robotica, 25, 63–74. doi: 10.1017/S0263574706002992.CrossRefGoogle Scholar
  7. Bhattacharya, S., & Hutchinson, S. (2010). On the existence of nash equilibrium for a two player Pursuit–Evasion game with visibility constraints. Berlin: Springer.zbMATHGoogle Scholar
  8. Bhattacharya, S., Candido, S., & Hutchinson, S. (2007). Motion strategies for surveillance. In Proceedings of Robotics: Science and Systems.Google Scholar
  9. Blackmore, L., & Ono, M. (2009). Convex chance constrained predictive control without sampling. In Proceedings of the AIAA Guidance, Navigation and Control Conference.Google Scholar
  10. Blackmore, L., Li, H., & Williams, B. (2006). A probabilistic approach to optimal robust path planning with obstacles. In 2006 American Control Conference. doi: 10.1109/ACC.2006.1656653
  11. Choi, H., & Kim, Y. (2014). UAV guidance using a monocular-vision sensor for aerial target tracking. Control Engineering Practice, 22, 10–19.CrossRefGoogle Scholar
  12. Choi, S., Kim, E., & Oh, S. (2014). Real-time navigation in crowded dynamic environments using gaussian process motion control. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
  13. Frew, E., & Rock, S. (2003). Trajectory generation for constant velocity target motion estimation using monocular vision. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
  14. Gonzalez-Banos, H., Lee, C.-Y., & Latombe, J.-C. (2002). Real-time combinatorial tracking of a target moving unpredictably among obstacles. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) Google Scholar
  15. Hirai, N., & Mizoguchi, H. (2003). Visual tracking of human back and shoulder for person following robot. In Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003) (Vol. 1).Google Scholar
  16. Jia, Z., Balasuriya, A., & Challa, S. (2006). Recent developments in vision based target tracking for autonomous vehicles navigation. In 2006 IEEE Intelligent Transportation Systems Conference.Google Scholar
  17. Kanayama, Y., Kimura, Y., Miyazaki, F., & Noguchi, T. (1991). A stable tracking control method for a non-holonomic mobile robot. In IEEE/RSJ International Workshop on Intelligent Robots and Systems.Google Scholar
  18. Kunwar, F., Wong, F., Mrad, R., & Benhabib, B. (2006). Guidance-based on-line robot motion planning for the interception of mobile targets in dynamic environments. Journal of Intelligent and Robotic Systems, 47(4), 341–360.CrossRefGoogle Scholar
  19. Kwon, H., Yoon, Y., Park, J. B., & Kak, A. C. (2005). Person tracking with a mobile robot using two uncalibrated independently moving cameras. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation.Google Scholar
  20. LaValle, S., Gonzalez-Banos, H., Becker, C., & Latombe, J.-C. (1997). Motion strategies for maintaining visibility of a moving target. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
  21. Lee, C.-Y., Gonzalez-Banos, H., & Latombe, J.-C. (2002). Real-time tracking of an unpredictable target amidst unknown obstacles. In 7th International Conference on Control, Automation, Robotics and Vision (ICARCV) Google Scholar
  22. Liu, S.-C., Tan, D.-L., & Liu, G.-J. (2007). Robust leader-follower formation control of mobile robots based on a second order kinematics model. Acta Automatica Sinica, 33(9), 947–955.MathSciNetCrossRefzbMATHGoogle Scholar
  23. Luders, B., Kothari, M., & How, J. P. (2010). Chance constrained RRT for probabilistic robustness to environmental uncertainty. In AIAA Guidance, Navigation, and Control Conference.Google Scholar
  24. Masehian, E., & Katebi, Y. (2014). Sensor-based motion planning of wheeled mobile robots in unknown dynamic environments. Journal of Intelligent and Robotic Systems, 74(3–4), 893–914. doi: 10.1007/s10846-013-9837-3.CrossRefGoogle Scholar
  25. Muppirala, T., Hutchinson, S., & Murrieta-Cid, R. (2005). Optimal motion strategies based on critical events to maintain visibility of a moving target. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
  26. Murrieta-Cid, R., Munoz-Gomez, L., Alencastre-Miranda, M., Sarmiento, A., Kloder, S., Hutchinson, S., Lamiraux, F., & Laumond, J. P. (2005a). Maintaining visibility of a moving holonomic target at a fixed distance with a non-holonomic robot. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.Google Scholar
  27. Murrieta-Cid, R., Tovar, B., & Hutchinson, S. (2005b). A sampling-based motion planning approach to maintain visibility of unpredictable targets. Autonomous Robots, 19(3), 285–300.CrossRefGoogle Scholar
  28. Murrieta-Cid, R., Muppirala, T., Sarmiento, A., Bhattacharya, S., & Hutchinson, S. (2007). Surveillance strategies for a pursuer with finite sensor range. The International Journal of Robotics Research, 26(3), 233–253. doi: 10.1177/0278364907077083.CrossRefGoogle Scholar
  29. Murrieta-Cid, R., Ruiz, U., Marroquin, J. L., Laumond, J.-P., & Hutchinson, S. (2011). Tracking an omnidirectional evader with a differential drive robot. Autonomous Robots, 31(4), 345. doi: 10.1007/s10514-011-9246-z.CrossRefGoogle Scholar
  30. Oh, Y., Choi, S., & Oh, S. (2015). Chance-constrained target tracking for mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
  31. Panagou, D., & Kumar, V. (2014). Cooperative visibility maintenance for leader follower formations in obstacle environments. IEEE Transactions on Robotics, 30(4), 831–844. doi: 10.1109/TRO.2014.2304774.CrossRefGoogle Scholar
  32. Roussos, G., & Kyriakopoulos, K. (2009). Towards constant velocity navigation and collision avoidance for autonomous nonholonomic aircraft-like vehicles. In Proceedings of the IEEE Conference on Decision and Control.Google Scholar
  33. Schneider, D. (2015). Flying selfie bots. IEEE Spectrum, 52(1), 49–51. doi: 10.1109/MSPEC.2015.6995634.CrossRefGoogle Scholar
  34. Shkurti, F., & Dudek, G. (2014). Maximizing visibility in collaborative trajectory planning. In 2014 IEEE International Conference on Robotics and Automation (ICRA). doi: 10.1109/ICRA.2014.6907405
  35. Trahanias, P., Burgard, W., Argyros, A., Hahnel, D., Baltzakis, H., Pfaff, P., et al. (2005). TOURBOT and WebFAIR: Web-operated mobile robots for tele-presence in populated exhibitions. IEEE Robotics Automation Magazine, 12(2), 77–89.CrossRefGoogle Scholar
  36. Tran, V.-H., & Lee, S.-G. (2011). A stable formation control using approximation of translational and angular accelerations. International Journal of Advanced Robotic Systems, 8(1), 65–75.CrossRefGoogle Scholar
  37. Wei, H., Lu, W., Zhu, P., Huang, G., Leonard, J., & Ferrari, S. (2014). Optimized visibility motion planning for target tracking and localization. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  38. Zhou, K., & Roumeliotis, S. (2011). Multirobot active target tracking with combinations of relative observations. IEEE Transactions on Robotics, 27(4), 678–695. doi: 10.1109/TRO.2011.2114734.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer Engineering, ASRISeoul National UniversitySeoulKorea

Personalised recommendations