An information based feedback control for audio-motor binaural localization

  • Gabriel Bustamante
  • Patrick Danès
  • Thomas Forgue
  • Ariel Podlubne
  • Jérôme Manhès
Article
  • 118 Downloads
Part of the following topical collections:
  1. Active Perception

Abstract

In static scenarios, binaural sound localization is fundamentally limited by front-back ambiguity and distance non-observability. Over the past few years, “active” schemes have been shown to overcome these shortcomings, by combining spatial binaural cues with the motor commands of the sensor. In this context, given a Gaussian prior on the relative position to a source, this paper determines an admissible motion of a binaural head which leads, on average, to the one-step-ahead most informative audio-motor localization. To this aim, a constrained optimization problem is set up, which consists in maximizing the entropy of the next predicted measurement probability density function over a cylindric admissible set. The method is appraised through geometrical arguments, and validated in simulations and on real-life robotic experiments.

Keywords

Robot audition Binaural audition Active localization Information theory Information based control 

Notes

Acknowledgements

The authors would like to thank Matthieu Herrb, Anthony Mallet, and Xavier Dollat for their invaluable help.

References

  1. Aaronson, N., & Hartmann, W. (2014). Testing, correcting, and extending the Woodworth model for interaural time difference. The Journal of the Acoustical Society of America, 135, 817–823.CrossRefGoogle Scholar
  2. Bourgault, F., Makarenko, A., Williams, S., Grocholsky, B., Durrant-Whyte, H. (2002). Information based adaptive robotic exploration. In IEEE/RSJ international conference on intelligent robots and systems, (IROS’2002), Lausanne, Switzerland.Google Scholar
  3. Bustamante, G., Danès, P., Forgue, T., Podlubne, A. (2016) Towards information-based feedback control for binaural active localization. In IEEE international conference on acoustics, speech, and signal processing (ICASSP’2016), Shanghai, China.Google Scholar
  4. Bustamante, G., Portello, A., Danès, P. (2015). A three-stage framework to active source localization from a binaural head. In IEEE international conference on acoustics, speech, and signal processing (ICASSP’2015), Brisbane, Australia. Google Scholar
  5. Cooke, M., Lu, Y., Lu, Y., Horaud, R. (2007). Active hearing, active speaking. In International symposium on auditory and audiological research (ISAAR’07), Marienlyst, Helsigør, Denmark.Google Scholar
  6. Cover, T., & Thomas, J. (1991). Elements of information theory. New York: Wiley.CrossRefMATHGoogle Scholar
  7. Denzler, J., & Brown, C. (2002). Information theoretic sensor data selection for active object recognition and state estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(2), 145–157.CrossRefGoogle Scholar
  8. Deutsch, B., Zobel, M., Denzler, J., & Niemann, H. (2004). Multi-step entropy based sensor control for visual object tracking. Pattern Recognition, 3175, 359–366.Google Scholar
  9. Feder, H., Leonard, J., & Smith, C. (1999). Adaptive mobile robot navigation and mapping. The International Journal of Robotics Research, 18(7), 650–668.CrossRefGoogle Scholar
  10. Forster, C., Pizzoli, M., Scaramuzza, D. (2014). Appearance-based active, monocular, dense reconstruction for micro aerial vehicles. In Proceedings of robotics, science and systems, Berkeley, USA.Google Scholar
  11. Grocholsky, B., Makarenko, A., Durrant-Whyte, H. (2003). Information-theoretic coordinated control of multiple sensor platforms. In IEEE international conference on robotics and automation, (ICRA’03), Taipei, Taiwan.Google Scholar
  12. Julian, B. (2013). Mutual information-based gradient-ascent control for distributed robotics. PhD thesis, Massachusetts Institute of Technology.Google Scholar
  13. Julier, S. J., & Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92(3), 401–422. doi:10.1109/JPROC.2003.823141.CrossRefGoogle Scholar
  14. Kumon, M., Fukushima, K., Kunimatsu, S., Ishitobi, M. (2010). Motion planning based on simultaneous perturbation stochastic approximation for mobile auditory robots. In IEEE/RSJ international conference on intelligent robots and systems (IROS’2010), Taipei, Taiwan. Google Scholar
  15. Le Cadre, J. P., & Laurent-Michel, S. (1999). Optimizing the receiver maneuvers for bearings-only tracking. Automatica, 35(4), 591–606.CrossRefMATHGoogle Scholar
  16. Mallet, A., Pasteur, C., Herrb, M., Lemaignan, S., Ingrand, F. (2010). Genom3: Building middleware-independent robotic components. In IEEE international conference on robotics and automation, (ICRA’2010), Anchorage, Alaska. Google Scholar
  17. Manyika, J. (1993). An information-theoretic approach to data fusion and sensor management. PhD thesis, University of Oxford.Google Scholar
  18. Martinson, E., Apker, T., Bugajska, M. (2011). Optimizing a reconfigurable robotic microphone array. In IEEE/RSJ international conference on intelligent robots and systems (IROS’2011), San Francisco, California.Google Scholar
  19. Martinson, E., & Schultz, A. (2009). Discovery of sound sources by an autonomous mobile robot. Autonomous Robots, 27, 221–237.CrossRefGoogle Scholar
  20. Nakadai, K., Lourens, T., Okuno, H., Kitano, H. (2000). Active audition for humanoid. In National conference on artificial intelligence (AAAI’2000). Austin, TX.Google Scholar
  21. Portello, A., Bustamante, G., Danès, P., Mifsud, A. (2014a). Localization of multiple sources from a binaural head in a known noisy environment. In IEEE/RSJ international conference on intelligent robots and systems (IROS’2014), Chicago, IL.Google Scholar
  22. Portello, A., Bustamante, G., Danès, P., Piat, J., Manhès, J. (2014b). Active localization of an intermittent sound source from a moving binaural sensor. In Forum Acustium (FA’2014), Krakow, Poland.Google Scholar
  23. Portello, A., Danès, P., Argentieri, S. (2012). Active binaural localization of intermittent moving sources in the presence of false measurements. In IEEE/RSJ international conference on intelligent robots and systems (IROS’2012).Google Scholar
  24. Portello, A., Danès, P., Argentieri, S., Pledel, S. (2013). HRTF-based source azimuth estimation and activity detection from a binaural sensor. In IEEE/RSJ international conference on intelligent robots and systems (IROS’2013), Tokyo, Japan.Google Scholar
  25. Ristic, B., & Arulampalam, M. (2003). Tracking a manoeuvring target using angle-only measurements: Algorithms and performance. Signal Processing, 83(6), 1223–1238.CrossRefMATHGoogle Scholar
  26. Sasaki, Y., Thompson, S., Kaneyoshi, M., Kagami, S. (2010). Map-generation and identification of multiple sound sources from robot in motion. In IEEE/RSJ international conference on intelligent robots and systems (IROS’2010), Taipei, Taiwan (pp. 437–443).Google Scholar
  27. Sommerlade, E., Reid, I. (2008). Information-theoretic active scene exploration. In IEEE conference on computer vision and pattern recognition, (CVPR’2008), Anchorage, Alaska.Google Scholar
  28. Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge, MA: The MIT Press.MATHGoogle Scholar
  29. Vincent, E., Sini, A., Charpillet, F. (2015). Audio source localization by optimal control of a mobile robot. In IEEE international conference on acoustics, speech and signal processing (ICASSP’2015), Brisbane, Australia.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.LAAS-CNRSUniversité de Toulouse, CNRS, UPSToulouseFrance

Personalised recommendations