Advertisement

Autonomous Robots

, Volume 42, Issue 1, pp 1–17 | Cite as

Robotic assembly solution by human-in-the-loop teaching method based on real-time stiffness modulation

  • Luka PeternelEmail author
  • Tadej Petrič
  • Jan Babič
Article

Abstract

We propose a novel human-in-the-loop approach for teaching robots how to solve assembly tasks in unpredictable and unstructured environments. In the proposed method the human sensorimotor system is integrated into the robot control loop though a teleoperation setup. The approach combines a 3-DoF end-effector force feedback with an interface for modulation of the robot end-effector stiffness. When operating in unpredictable and unstructured environments, modulation of limb impedance is essential in terms of successful task execution, stability and safety. We developed a novel hand-held stiffness control interface that is controlled by the motion of the human finger. A teaching approach was then used to achieve autonomous robot operation. In the experiments, we analysed and solved two part-assembly tasks: sliding a bolt fitting inside a groove and driving a self-tapping screw into a material of unknown properties. We experimentally compared the proposed method to complementary robot learning methods and analysed the potential benefits of direct stiffness modulation in the force-feedback teleoperation.

Keywords

Human-in-the-loop Robot learning Compliant assembly Human–robot interface Teleoperation 

Notes

Acknowledgements

The authors would like to thank Barry Ridge for narrating the supplementary video.

Supplementary material

Supplementary material 1 (mp4 20490 KB)

Supplementary material 2 (mp4 2391 KB)

References

  1. Ajoudani, A., Godfrey, S., Bianchi, M., Catalano, M., Grioli, G., Tsagarakis, N., et al. (2014). Exploring teleimpedance and tactile feedback for intuitive control of the pisa/iit softhand. IEEE Transactions on Haptics, 7(2), 203–215.CrossRefGoogle Scholar
  2. Ajoudani, A., Tsagarakis, N. G., & Bicchi, A. (2012). Tele-impedance: Teleoperation with impedance regulation using a body–machine interface. The International Journal of Robotics Research, 31(13), 1642–1656.CrossRefGoogle Scholar
  3. Albu-Schäffer, A., Ott, C., Frese, U., & Hirzinger, G. (2003). Cartesian impedance control of redundant robots: Recent results with the DLR-light-weight-arms. In 2003 IEEE international conference on robotics and automation (ICRA), vol. 3, pp. 3704–3709.Google Scholar
  4. Albu-Schäffer, A., Ott, C., & Hirzinger, G. (2007). A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. The International Journal of Robotics Research, 26(1), 23–39.CrossRefzbMATHGoogle Scholar
  5. Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics and Autonomous Systems, 57(5), 469–483.CrossRefGoogle Scholar
  6. Babič, J., Hale, J. G., & Oztop, E. (2011). Human sensorimotor learning for humanoid robot skill synthesis. Adaptive Behavior—Animals, Animats, Software Agents, Robots, Adaptive Systems, 19, 250–263.Google Scholar
  7. Ben Amor, H., Berger, E., Vogt, D., & Jung, B. (2009). Kinesthetic bootstrapping: Teaching motor skills to humanoid robots through physical interaction. In Proceedings of the 32nd Annual German conference on advances in artificial intelligence, pp. 492–499.Google Scholar
  8. Ben Amor, H., Neumann, G., Kamthe, S., Kroemer, O., & Peters, J. (2014). Interaction primitives for human–robot cooperation tasks. In 2014 IEEE international conference on robotics and automation (ICRA), pp. 2831–2837.Google Scholar
  9. Billard, A., Calinon, S., Dillmann, R., & Schaal, S. (2008). Robot programming by demonstration. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics (pp. 1371–1394). Berlin: Springer.CrossRefGoogle Scholar
  10. Buchli, J., Stulp, F., Theodorou, E., & Schaal, S. (2011). Learning variable impedance control. The International Journal of Robotics Research, 30(7), 820–833.CrossRefGoogle Scholar
  11. Burdet, E., Osu, R., Franklin, D. W., Milner, T. E., & Kawato, M. (2001). The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature, 414(6862), 446–449.CrossRefGoogle Scholar
  12. Calinon, S., Sardellitti, I., & Caldwell, D. (2010). Learning-based control strategy for safe human–robot interaction exploiting task and robot redundancies. In 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 249–254.Google Scholar
  13. Daniel, R., & McAree, P. (1998). Fundamental limits of performance for force reflecting teleoperation. The International Journal of Robotics Research, 17(8), 811–830.CrossRefGoogle Scholar
  14. De Luca, A., Albu-Schäffer, A., Haddadin, S., & Hirzinger, G. (2006). Collision detection and safe reaction with the DLR-III lightweight manipulator arm. In 2006 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 1623–1630.Google Scholar
  15. Emge, N., Prebeg, G., Uygur, M., & Jaric, S. (2013). Effects of muscle fatigue on grip and load force coordination and performance of manipulation tasks. Neuroscience Letters, 550, 46–50.CrossRefGoogle Scholar
  16. Evrard, P., Gribovskaya, E., Calinon, S., Billard, A., & Kheddar, A. (2009). Teaching physical collaborative tasks: Object-lifting case study with a humanoid. In IEEE-RAS international conference on humanoid robots, pp. 399–404.Google Scholar
  17. Fite, K. B., Speich, J. E., & Goldfarb, M. (2001). Transparency and stability robustness in two-channel bilateral telemanipulation. Journal of Dynamic Systems, Measurement, and Control, 123(8), 400–407.CrossRefGoogle Scholar
  18. Garabini, M., Passaglia, A., Belo, F., Salaris, P., & Bicchi, A. (2011). Optimality principles in variable stiffness control: The vsa hammer. In 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 3770–3775.Google Scholar
  19. Hannaford, B., & Anderson, R. (1988). Experimental and simulation studies of hard contact in force reflecting teleoperation. In 1988 IEEE international conference on robotics and automation (ICRA), (pp. 584–589). Philadelphia, USA.Google Scholar
  20. Hersch, M., Guenter, F., Calinon, S., & Billard, A. (2008). Dynamical system modulation for robot learning via kinesthetic demonstrations. IEEE Transactions on Robotics, 24(6), 1463–1467.CrossRefGoogle Scholar
  21. Hogan, N. (1984). Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Transactions on Automatic Control, 29(8), 681–690.CrossRefzbMATHGoogle Scholar
  22. Hogan, N. (1985). Impedance control: An approach to manipulation. I—Theory. II—Implementation. III—Applications. ASME Transactions Journal of Dynamic Systems and Measurement Control B, 107, 1–24.CrossRefzbMATHGoogle Scholar
  23. Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Computation, 25(2), 328–373.MathSciNetCrossRefzbMATHGoogle Scholar
  24. Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2002a). Learning rhythmic movements by demonstration using nonlinear oscillators. In 2002 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 958–963.Google Scholar
  25. Ijspeert, A . J., Nakanishi, J., & Schaal, S. (2002b). Movement imitation with nonlinear dynamical systems in humanoid robots. In 2002 IEEE international conference on robotics and automation (ICRA), vol. 2, pp. 1398–1403.Google Scholar
  26. Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Pütz, B., et al. (2000). Human cerebellar activity reflecting an acquired internal model of a new tool. Nature, 403(6766), 192–195.CrossRefGoogle Scholar
  27. Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9(6), 718–727.CrossRefGoogle Scholar
  28. Kim, W., Hannaford, B., & Fejczy, A. (1992). Force-reflection and shared compliant control in operating telemanipulators with time delay. IEEE Transactions on Robotics and Automation, 8(2), 176–185.CrossRefGoogle Scholar
  29. Kober, J., Wilhelm, A., Oztop, E., & Peters, J. (2012). Reinforcement learning to adjust parametrized motor primitives to new situations. Autonomous Robots, 33(4), 361–379.CrossRefGoogle Scholar
  30. Kormushev, P., Calinon, S., & Caldwell, D. (2010). Robot motor skill coordination with em-based reinforcement learning. In 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 3232–3237.Google Scholar
  31. Kormushev, P., Calinon, S., & Caldwell, D. G. (2011). Imitation learning of positional and force skills demonstrated via kinesthetic teaching and haptic input. Advanced Robotics, 25(5), 581–603.CrossRefGoogle Scholar
  32. Kronander, K., & Billard, A. (2012). Online learning of varying stiffness through physical human–robot interaction. In 2012 IEEE international conference on robotics and automation (ICRA), pp. 1842–1849.Google Scholar
  33. Kronander, K., & Billard, A. (2014). Learning compliant manipulation through kinesthetic and tactile human–robot interaction. IEEE Transactions on Haptics, 7(3), 367–380.CrossRefGoogle Scholar
  34. Kronander, K., Burdet, E., & Billard, A. (2014). Task transfer via collaborative manipulation for insertion assembly. Workshop on human–robot interaction for industrial manufacturing, robotics, science and systems.Google Scholar
  35. Kuchenbecker, K. J., & Niemeyer, G. (2006). Induced master motion in force-reflecting teleoperation. Journal of Dynamic Systems, Measurement, and Controlh, 128(4), 800–810.CrossRefGoogle Scholar
  36. Kushida, D., Nakamura, M., Goto, S., & Kyura, N. (2001). Human direct teaching of industrial articulated robot arms based on force-free control. Artificial Life and Robotics, 5(1), 26–32.CrossRefGoogle Scholar
  37. Lee, D., & Ott, C. (2011). ncremental kinesthetic teaching of motion primitives using the motion refinement tube. Autonomous Robots, 31(2), 115–131.CrossRefGoogle Scholar
  38. Liang, P., Yang, C., Li, Z., & Li, R. (2015). Writing skills transfer from human to robot using stiffness extracted from sEMG. In 2015 IEEE international conference on cyber technology in automation, control, and intelligent systems (CYBER), pp. 19–24.Google Scholar
  39. Oztop, E., Lin, L.-H., Kawato, M., & Cheng, G. (2006). Dexterous skills transfer by extending human body schema to a robotic hand. In 2006 6th IEEE-RAS international conference on humanoid robots, pp. 82–87.Google Scholar
  40. Paraschos, A., Daniel, C., Peters, J., & Neumann, G. (2013). Probabilistic movement primitives. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Weinberger (Eds.), Advances in neural information processing systems 26 (pp. 2616–2624). Red Hook: Curran Associates Inc.Google Scholar
  41. Peternel, L., Noda, T., Petrič, T., Ude, A., Morimoto, J., & Babič, J. (2016a). Adaptive control of exoskeleton robots for periodic assistive behaviours based on EMG feedback minimisation. PLoS ONE, 11(2), e0148942.CrossRefGoogle Scholar
  42. Peternel, L., Petrič, T., & Babič, J. (2015). Human-in-the-loop approach for teaching robot assembly tasks using impedance control interface. In 2015 IEEE international conference on robotics and automation (ICRA), pp. 1497–1502.Google Scholar
  43. Peternel, L., Petrič, T., Oztop, E., & Babič, J. (2014). Teaching robots to cooperate with humans in dynamic manipulation tasks based on multi-modal human-in-the-loop approach. Autonomous robots, 36(1–2), 123–136.CrossRefGoogle Scholar
  44. Peternel, L., Tsagarakis, N., & Ajoudani, A. (2016b). Towards multi-modal intention interfaces for human–robot co-manipulation. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 2663–2669.Google Scholar
  45. Petrič, T., Gams, A., Ijspeert, A. J., & Žlajpah, L. (2011). On-line frequency adaptation and movement imitation for rhythmic robotic tasks. The International Journal of Robotics Research, 30(14), 1775–1788.CrossRefGoogle Scholar
  46. Rozo, L., Bruno, D., Calinon, S., & Caldwell, D. G. (2015). Learning optimal controllers in human-robot cooperative transportation tasks with position and force constraints. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS).Google Scholar
  47. Schaal, S., & Atkeson, C. G. (1998). Constructive incremental learning from only local information. Neural Computation, 10(8), 2047–2084.CrossRefGoogle Scholar
  48. Schindlbeck, C., & Haddadin, S. (2015). Unified passivity-based cartesian force/impedance control for rigid and flexible joint robots via task-energy tanks. In 2015 IEEE international conference on robotics and automation (ICRA), pp. 440–447.Google Scholar
  49. Theodorou, E., Buchli, J., & Schaal, S. (2010). A generalized path integral control approach to reinforcement learning. Journal of Machine Learning Research, 11, 3137–3181.MathSciNetzbMATHGoogle Scholar
  50. Todd, G., Gandevia, S. C., & Taylor, J. L. (2010). Change in manipulation with muscle fatigue. European Journal of Neuroscience, 32(10), 1686–1694.CrossRefGoogle Scholar
  51. Tonietti, G., Schiavi, R., & Bicchi, A. (2005). Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction. In 2005 IEEE international conference on robotics and automation (ICRA), pp. 526–531.Google Scholar
  52. Tsumugiwa, T., Yokogawa, R., & Hara, K. (2002). Variable impedance control with virtual stiffness for human-robot cooperative peg-in-hole task. In 2002 IEEE/RSJ international conference on intelligent robots and systems (IROS), vol. 2, pp. 1075–1081.Google Scholar
  53. Van Der Linde, R. Q., Lammertse, P., Frederiksen, E., & Ruiter, B. (2002). The hapticmaster, a new high-performance haptic interface. In Proceedings of Eurohaptics, 2002, 1–5.Google Scholar
  54. Walker, D., Salisbury, J., & Niemeyer, G. (2011). Demonstrating the benefits of variable impedance to telerobotic task execution. In IEEE international conference on robotics and automation (ICRA), 2011 , (pp. 1348–1353).Google Scholar
  55. Walker, D., Wilson, R., & Niemeyer, G. (2010). User-controlled variable impedance teleoperation. In IEEE International Conference on Robotics and Automation (ICRA), 2010 , (pp. 5352–5357).Google Scholar
  56. Wolf, S., & Hirzinger, G. (2008). A new variable stiffness design: Matching requirements of the next robot generation. In IEEE International Conference on Robotics and Automation (ICRA), 2008, (pp. 1741–1746).Google Scholar
  57. Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338–347.CrossRefGoogle Scholar
  58. Yang, C., Ganesh, G., Haddadin, S., Parusel, S., Albu-Schäffer, A., & Burdet, E. (2011). Human-like adaptation of force and impedance in stable and unstable interactions. IEEE Transactions on Robotics, 27(5), 918–930.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Automation Biocybernetics and RoboticsJožef Stefan InstituteLjubljanaSlovenia
  2. 2.HRII Lab, Department of Advanced RoboticsIstituto Italiano di TechnologiaGenoaItaly

Personalised recommendations