Advertisement

Autonomous Robots

, Volume 42, Issue 2, pp 491–512 | Cite as

Adaptive sampling of cumulus clouds with UAVs

  • Christophe Reymann
  • Alessandro Renzaglia
  • Fayçal Lamraoui
  • Murat Bronz
  • Simon Lacroix
Article
Part of the following topical collections:
  1. Active Perception

Abstract

This paper presents an approach to guide a fleet of Unmanned Aerial Vehicles (UAVs) to actively gather data in low-altitude cumulus clouds with the aim of mapping atmospheric variables. Building on-line maps based on very sparse local measurements is the first challenge to overcome, for which an approach based on Gaussian Processes is proposed. A particular attention is given to the on-line hyperparameters optimization, since atmospheric phenomena are strongly dynamical processes. The obtained local map is then exploited by a trajectory planner based on a stochastic optimization algorithm. The goal is to generate feasible trajectories which exploit air flows to perform energy-efficient flights, while maximizing the information collected along the mission. The system is then tested in simulations carried out using realistic models of cumulus clouds and of the UAVs flight dynamics. Results on mapping achieved by multiple UAVs and an extensive analysis on the evolution of Gaussian processes hyperparameters is proposed.

Keywords

Mapping with UAVs Active data gathering Path planning 

Notes

Acknowledgements

This work is made in the context of the SkyScanner project, supported by the STAE foundation.

References

  1. Basilico, N., & Amigoni, F. (2011). Exploration strategies based on multi-criteria decision making for searching environments in rescue operations. Autonomous Robots, 31(4), 401.CrossRefGoogle Scholar
  2. Bronz, M., Hattenberger, G., & Moschetta, J. M. (2013). Development of a long endurance mini-UAV: Eternity. International Journal of Micro Air Vehicles, 5(4), 261–272.CrossRefGoogle Scholar
  3. Brown, A. R., Cederwall, R. T., Chlond, A., Duynkerke, P. G., Golaz, J. C., Khairoutdinov, M., et al. (2002). Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quarterly Journal of the Royal Meteorological Society, 128(582), 1075–1093.CrossRefGoogle Scholar
  4. Chai, K. M. (2010). Multi-task learning with Gaussian processes. Ph.D. thesis, The University of Edinburgh.Google Scholar
  5. Chung, J. J., Lawrance, N. R., & Sukkarieh, S. (2015). Learning to soar: Resource-constrained exploration in reinforcement learning. The International Journal of Robotics Research, 34(2), 158–172.CrossRefGoogle Scholar
  6. Condomines, J. P., Bronz, M., Hattenberger, G., & Erdelyi, J. F. (2015). Experimental wind field estimation and aircraft identification. In IMAV 2015: International micro air vehicles conference and flight competition, Aachen.Google Scholar
  7. Corrigan, C. E., Roberts, G. C., Ramana, M. V., Kim, D., & Ramanathan, V. (2008). Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles. Atmospheric Chemistry and Physics, 8(3), 737–747.CrossRefGoogle Scholar
  8. Das, J., Harvey, J., Py, F., Vathsangam, H., Graham, R., Rajan, K., & Sukhatme, G. (2013). Hierarchical probabilistic regression for AUV-based adaptive sampling of marine phenomena. In IEEE international conference on robotics and automation (ICRA) (pp. 5571–5578).Google Scholar
  9. Del Genio, A. D., & Wu, J. (2010). The role of entrainment in the diurnal cycle of continental convection. Journal of Climate, 23(10), 2722–2738.CrossRefGoogle Scholar
  10. Diaz, J., Pieri, D., Arkin, C. R., Gore, E., Griffin, T., Fladeland, M., et al. (2010). Utilization of in situ airborne MS-based instrumentation for the study of gaseous emissions at active volcanoes. International Journal of Mass Spectrometry, 295(3), 105–112.CrossRefGoogle Scholar
  11. Elston, J., & Argrow, B. (2014). Energy efficient UAS flight planning for characterizing features of supercell thunderstorms. In IEEE international conference on robotics and automation (ICRA) (pp. 6555–6560).Google Scholar
  12. Elston, J., Argrow, B., Stachura, M., Weibel, D., Lawrence, D., & Pope, D. (2015). Overview of small fixed-wing unmanned aircraft for meteorological sampling. Journal of Atmospheric and Oceanic Technology, 32, 97–115.Google Scholar
  13. Elston, J. S., Roadman, J., Stachura, M., Argrow, B., Houston, A., & Frew, E. (2011). The tempest unmanned aircraft system for in situ observations of tornadic supercells: Design and VORTEX2 flight results. Journal of Field Robotics, 28(4), 461–483.CrossRefGoogle Scholar
  14. Holland, G. J., Webster, P. J., Curry, J. A., Tyrell, G., Gauntlett, D., Brett, G., et al. (2001). The aerosonde robotic aircraft: A new paradigm for environmental observations. Bulletin of the American Meteorological Society, 82(5), 889–901.CrossRefGoogle Scholar
  15. Inoue, J., Curry, J. A., & Maslanik, J. A. (2008). Application of aerosondes to melt-pond observations over Arctic sea ice. Journal of Atmospheric and Oceanic Technology, 25(2), 327–334.CrossRefGoogle Scholar
  16. Kim, S., & Kim, J. (2015). GPmap: A unified framework for robotic mapping based on sparse Gaussian processes. In Field and service robotics (pp. 319–332). Springer International Publishing.Google Scholar
  17. Lafore, J. P., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V., Duron, J., et al. (1998). The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations. Annales Geophysicae, 16(1), 90–109.CrossRefGoogle Scholar
  18. Langelaan, J. W., Alley, N., & Neidhoefer, J. (2011). Wind field estimation for small unmanned aerial vehicles. Journal of Guidance, Control, and Dynamics, 34, 1016–1030.CrossRefGoogle Scholar
  19. Langelaan, J. W., Spletzer, J., Montella, C., & Grenestedt, J. (2012). Wind field estimation for autonomous dynamic soaring. In IEEE international conference on robotics and automation (ICRA).Google Scholar
  20. Lawrance, N., & Sukkarieh, S. (2011). Path planning for autonomous soaring flight in dynamic wind fields. In 2011 IEEE international conference on robotics and automation (ICRA), pp. 2499–2505.Google Scholar
  21. Lawrance, N. R., & Sukkarieh, S. (2011). Autonomous exploration of a wind field with a gliding aircraft. Journal of Guidance, Control, and Dynamics, 34(3), 719–733.CrossRefGoogle Scholar
  22. Michini, M., Hsieh, M. A., Forgoston, E., & Schwartz, I. B. (2014). Robotic tracking of coherent structures in flows. IEEE Transactions on Robotics, 30(3), 593–603.CrossRefGoogle Scholar
  23. Nguyen, J., Lawrance, N., Fitch, R., & Sukkarieh, S. (2013). Energy-constrained motion planning for information gathering with autonomous aerial soaring. In IEEE international conference on robotics and automation (ICRA) (pp. 3825–3831).Google Scholar
  24. Petres, C., Pailhas, Y., Patron, P., Petillot, Y., Evans, J., & Lane, D. (2007). Path planning for autonomous underwater vehicles. IEEE Transactions on Robotics, 23(2), 331–341.CrossRefGoogle Scholar
  25. Ramanathan, V., Ramana, M. V., Roberts, G., Kim, D., Corrigan, C., Chung, C., et al. (2007). Warming trends in Asia amplified by brown cloud solar absorption. Nature, 448(7153), 575–578.CrossRefGoogle Scholar
  26. Rasmussen, C. E., & Williams, C. K. (2006). Gaussian processes for machine learning. Cambridge: The MIT Press.zbMATHGoogle Scholar
  27. Ravela, S., Vigil, T., & Sleder, I. (2013). Tracking and Mapping Coherent Structures. In International conference on computational science (ICCS).Google Scholar
  28. Renzaglia, A., Reymann, C., & Lacroix, S. (2016). Monitoring the evolution of clouds with UAVs. In IEEE international conference on robotics and automation. Stockholm, Sweden.Google Scholar
  29. Roberts, C. G., Ramana, M., Corrigan, C., Kim, D., & Ramanathan, V. (2008). Simultaneous observations of aerosol–cloud–albedo interactions with three stacked unmanned aerial vehicles. Proceedings of the National Academy of Sciences of the United States of America, 105(21), 7370–7375.CrossRefGoogle Scholar
  30. Sadegh, P. (1997). Constrained optimization via stochastic approximation with a simultaneous perturbation gradient approximation. Automatica, 33(5), 889–892.MathSciNetCrossRefzbMATHGoogle Scholar
  31. Soulignac, M. (2011). Feasible and optimal path planning in strong current fields. IEEE Transactions on Robotics, 27(1), 89–98.CrossRefGoogle Scholar
  32. Souza, J., Marchant, R., Ott, L., Wolf, D., & Ramos, F. (2014). Bayesian optimisation for active perception and smooth navigation. In 2014 IEEE international conference on robotics and automation (ICRA) (pp. 4081–4087).Google Scholar
  33. Spall, J. C. (1998). Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Transactions on Aerospace and Electronic Systems, 34(3), 817–823.CrossRefGoogle Scholar
  34. Spall, J. C. (2005). Introduction to stochastic search and optimization: Estimation, simulation, and control (Vol. 65). New York: Wiley.zbMATHGoogle Scholar
  35. Stevens, B., & Bony, S. (2013). What are climate models missing? Science, 340(6136), 1053–1054.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.LAAS-CNRS, INSAUniversité de Toulouse, CNRSToulouseFrance
  2. 2.Météo-France/CNRS, CNRM/GAMEToulouseFrance
  3. 3.ENACToulouseFrance

Personalised recommendations