Autonomous Robots

, Volume 41, Issue 8, pp 1555–1573 | Cite as

Stabilizing air dampers for hovering aerial robotics: design, insect-scale flight tests, and scaling

  • Sawyer B. FullerEmail author
  • Zhi Ern Teoh
  • Pakpong Chirarattananon
  • Néstor O. Pérez-Arancibia
  • Jack Greenberg
  • Robert J. Wood


Most hovering aircraft such as helicopters and animal-inspired flapping-wing flyers are dynamically unstable in flight, quickly tumbling in the absence of feedback control. The addition of feedback loops can stabilize, but at the cost of additional sensing and actuation components. This can add expense, weight, and complexity. An alternative to feedback is the use of passive mechanisms such as aerodynamic drag to stabilize attitude. Previous work has suggested that small aircraft can be stabilized by adding air dampers above and below the center of mass. We present flight tests of an insect-scale robot operating under this principle. When controlled to a constant altitude, it remains stably upright while undergoing cyclic attitude oscillations. To characterize these oscillations, we present a nonlinear analytic model derived from first principles that reproduces the observed behavior. Using numerical simulation, we analyze how changing damper size, position, mass, and midpoint offset affect these oscillations, building on previous work that considered only a single configuration. Our results indicate that only by increasing damper size can lateral oscillation amplitude be significantly reduced, at the cost of increased damper mass. Additionally, we show that as scale diminishes, the damper size must get relatively larger. This suggests that smaller damper-equipped robots must operate in low-wind areas or in boundary-layer flow near surfaces.


Micro aerial vehicle Insect-scale vehicle Hovering flight Stability Nonlinear dynamics Limit cycle 



This work was partially supported by the National Science Foundation (Award Nos. CCF-0926148 and CMMI-0746638) and the Wyss Institute for Biologically Inspired Engineering. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The authors wish to thank Longlong Chang for showing us that the original analysis was missing an inertial added mass term and Will Dickson for insightful discussions.

Supplementary material

Supplementary material 1 (mp4 14859 KB)

10514_2017_9623_MOESM2_ESM.ipynb (1.6 mb)
Supplementary material 2 (ipynb 1627 KB) (48 kb)
Supplementary material 3 (py 49 KB)


  1. Abzug, M. J., & Larrabee, E. E. (2002). Airplane stability and control. A history of the technologies that made aviation possible (2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. Åström, K. J., & Murray, R. M. (2008). Feedback systems: An introduction for scientists and engineers. Princeton: Princeton University Press.Google Scholar
  3. Blevins, R. D. (2015). Formulas for dynamics, acoustics and vibration. New York: Wiley.CrossRefGoogle Scholar
  4. Chirarattananon, P. C., & Wood, R. J. (2013). Identification of flight aerodynamics for flapping-wing microrobots. In 2013 IEEE international conference on robotics and automation (ICRA).Google Scholar
  5. De Croon, G., De Clercq, K., Ruijsink, R., Remes, B., & De Wagter, C. (2009). Design, aerodynamics, and vision-based control of the delfly. International Journal of Micro Air Vehicles, 1(2), 71–97.CrossRefGoogle Scholar
  6. Dickinson, M. H. (1999). Haltere-mediated equilibrium reflexes of the fruit fly, drosophila melanogaster. Philosophical Transactions of the Royal Society of London B, 354, 903–916.CrossRefGoogle Scholar
  7. Dickinson, M. H., & Götz, K. G. (1996). The wake dynamics and flight forces of the fruit fly drosophila melanogaster. Journal of Experimental Biology, 199(9), 2085–2104.Google Scholar
  8. Dickinson, M. H., Lehmann, F. O., & Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science, 284(5422), 1954–1960.CrossRefGoogle Scholar
  9. Dudley, R. (2002). The biomechanics of insect flight: Form, function, evolution. Princeton: Princeton University Press.Google Scholar
  10. Eberle, A., Dickerson, B., Reinhall, P. G., & Daniel, T. (2015). A new twist on gyroscopic sensing: Body rotations lead to torsion in flapping, flexing insect wings. Journal of the Royal Society Interface, 12(104), 20141,088.CrossRefGoogle Scholar
  11. Ellington, C. P. (1984). The aerodynamics of hovering insect flight. ii. Morphological parameters. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 305(1122), 17–40. doi: 10.1098/rstb.1984.0050.CrossRefGoogle Scholar
  12. Ellington, C. P., Van Den Berg, C., Willmott, A. P., & Thomas, A. L. (1996). Leading-edge vortices in insect flight. Nature, 384(19), 626–630.CrossRefGoogle Scholar
  13. Fearing, R., Chiang, K., Dickinson, M., Pick, D., Sitti, M., & Yan, J. (2000). Wing transmission for a micromechanical flying insect. In IEEE international conference on robotics and automation (ICRA) vol. 2, (pp. 1509–1516).Google Scholar
  14. Finio, B. M., Pérez-Arancibia, N. O., & Wood, R. J. (2011). System identification and linear time-invariant modeling of an insect-sized flapping-wing micro air vehicle. In 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS).Google Scholar
  15. Fuller, S. B., Helbling, E. F., Chirarattananon, P., & Wood, R. J. (2014a). Using aMEMS gyroscope to stabilize the attitude of a fly-sized hovering robots. In 2014 International conference on micro air vehicle (IMAV), Delft, The Netherlands.Google Scholar
  16. Fuller, S. B., Karpelson, M., Censi, A., Ma, K. Y., & Wood, R. J. (2014b). Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli. Jouranl of the Royal Society Interface. doi: 10.1098/rsif.2014.0281.
  17. Gravish, N., Peters, J. M., Combes, S. A., & Wood, R. J. (2015). Collective flow enhancement by tandem flapping wings. Physical Review Letters, 115(18), 188101.CrossRefGoogle Scholar
  18. Helbling, E. F., Fuller, S. B., & Wood, R. J. (2014). Pitch and yaw control of a robotic insect using an onboard magnetometer. In 2014 IEEE international conference on robotics and automation (ICRA).Google Scholar
  19. Hoerner, S. F. (1965). Fluid-dynamic drag: Practical information on aerodynamic drag and hydrodynamic resistance. Midland Park: Hoerner Fluid Dynamics.Google Scholar
  20. Keennon, M., Klingebiel, K., Won, H., & Andriukov, A. (2012). Development of the nano hummingbird: A tailless flapping wing micro air vehicle. In AIAA aerospace sciences meeting, AIAA, Reston, VA (pp. 1–24). doi: 10.2514/6.2012-588.
  21. Kroo, I., & Kunz, P. (2000). Development of the mesicopter: A miniature autonomous rotorcraft. In American helicopter society (AHS) vertical lift aircraft design conference, San Francisco, CA.Google Scholar
  22. Ma, K. Y., Felton, S. M., & Wood, R. J. (2012). Design, fabrication, and modeling of the splitactuator microrobotic bee. In 2012 IEEE international conference on robotics and automation (ICRA), St. Paul, MN (pp. 1133–1140).Google Scholar
  23. Ma, K. Y., Chirarattananon, P., Fuller, S. B., & Wood, R. (2013). Controlled flight of a biologically inspired, insect-scale robot. Science, 340(6132), 603–607.CrossRefGoogle Scholar
  24. Macnab, R. M., & Koshland, D. (1972). The gradient-sensing mechanism in bacterial chemotaxis. Proceedings of the National Academy of Sciences, 69(9), 2509–2512.CrossRefGoogle Scholar
  25. Pérez-Arancibia, N. O., Ma, K. Y., Galloway, K. C., Greenberg, J. D., & Wood, R. J. (2011). First controlled vertical flight of a biologically inspired microrobot. Bioinspiration and Biomimetics, 6(3), 036009. doi: 10.1088/1748-3182/6/3/036009.
  26. Pesavento, U., & Wang, Z. (2009). Flapping wing flight can save aerodynamic power compared to steady flight. Physical Review Letters, 103(11), 118,102.CrossRefGoogle Scholar
  27. Pringle, J. W. S. (1948). The gyroscopic mechanism of the halteres of diptera. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 233(602), 347–384.CrossRefGoogle Scholar
  28. Richter, C., & Lipson, H. (2011). Untethered hovering flapping flight of a 3d-printed mechanical insect. Artificial Life, 17(2), 73–86.CrossRefGoogle Scholar
  29. Ristroph, L., Bergou, A. J., Ristroph, G., Coumes, K., Berman, G. J., Guckenheimer, J., et al. (2010). Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles. Proceedings of the National Academy of Sciences, 107(11), 4820–4824. doi: 10.1073/pnas.1000615107.CrossRefGoogle Scholar
  30. Ristroph, L., Ristroph, G., Morozova, S., Bergou, A. J., Chang, S., Guckenheimer, J., et al. (2013). Active and passive stabilization of body pitch in insect flight. Journal of the Royal Society Interface. doi: 10.1098/rsif.2013.0237.
  31. Sane, S. P., & Dickinson, M. H. (2001). The control of flight force by a flapping wing: Lift and drag production. The Journal of Experimental Biology, 204, 2607–2626.Google Scholar
  32. Sane, S. P., Dieudonné, A., Willis, M. A., & Daniel, T. L. (2007). Antennal mechanosensors mediate flight control in moths. Science, 315(5813), 863–866. doi: 10.1126/science.1133598.
  33. Sreetharan, P., & Wood, R. J. (2011). Passive torque regulation in an underactuated flapping wing robotic insect. Autonomous Robots, 31(2–3), 225–234.CrossRefGoogle Scholar
  34. Tanaka, H., & Shimoyama, I. (2010). Forward flight of swallowtail butterfly with simple flapping motion. Bioinspiration & Biomimetics, 5(2), 026003. doi: 10.1088/1748-3182/5/2/026003.CrossRefGoogle Scholar
  35. Teoh, Z. E., Fuller, S. B., Chirarattananon, P. C., Pérez-Arancibia, N. O., Greenberg, J. D., & Wood, R. J. (2012). A hovering flapping-wing microrobot with altitude control andpassive upright stability. In 2012 IEEE/RSJ international conference on intelligent robots and systems (IROS), Vilamoura, Algarve, Portugal (pp. 3209–3216).Google Scholar
  36. Trimmer, W. S. N. (1989). Microbots and micromechanical systems. Sensors and Actuators, 19, 267–287.CrossRefGoogle Scholar
  37. Ulrich, E., Pines, D., & Humbert, J. S. (2010). From falling to flying: The path to powered flight of a robotic samara nano air vehicle. Bioinspiration & Biomimetics, 5(045), 009.Google Scholar
  38. van Breugel, F., Regan, W., & Lipson, H. (2008). From insects to machines. IEEE Robotics & Automation Magazine, 15(4), 68–74. doi: 10.1109/MRA.2008.929923.CrossRefGoogle Scholar
  39. Wang, Z. J., Birch, J. M., & Dickinson, M. H. (2004). Unsteady forces and flows in low reynolds number hovering flight: Two-dimensional computations versus robotic wing experiments. Journal of Experimental Biology, 207(3), 449–460. doi: 10.1242/jeb.00739.CrossRefGoogle Scholar
  40. Whitney, J., Sreetharan, P., Ma, K., & Wood, R. (2011). Pop-up book mems. Journal of Micromechanics and Microengineering, 21(11), 115021.CrossRefGoogle Scholar
  41. Wilson, M. (1978). The functional organisation of locust ocelli. Journal of Comparative Physiology, 124(4), 297–316. doi: 10.1007/BF00661380.CrossRefGoogle Scholar
  42. Wood, R. J. (2008). The first takeoff of a biologically inspired at-scale robotic insect. IEEE Transactions on Robotics, 24(2), 341–347. doi: 10.1109/TRO.2008.916997.CrossRefGoogle Scholar
  43. Wood, R. J., Avadhanula, S., Menon, M., & Fearing, R. S. (2003). Microrobotics using composite materials: The micromechanical flying insect thorax. In 2003 ieee international conference on robotics and automation (ICRA) (vol. 2 pp. 1842–1849). doi: 10.1109/ROBOT.2003.1241863.
  44. Wood, R. J., Avadhanula, S., Sahai, R., Steltz, E., & Fearing, R. S. (2008). Microrobot design using fiber reinforced composites. Journal of Mechanical Design, 130, 052304.CrossRefGoogle Scholar
  45. Zdunich, P., Bilyk, D., MacMaster, M., Loewen, D., DeLaurier, J., Kornbluh, R., et al. (2007). Development and testing of the mentor flapping-wing micro air vehicle. Journal of Aircraft, 44(5), 1701–1711.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sawyer B. Fuller
    • 1
    • 2
    • 3
    Email author
  • Zhi Ern Teoh
    • 2
    • 3
  • Pakpong Chirarattananon
    • 4
  • Néstor O. Pérez-Arancibia
    • 5
  • Jack Greenberg
    • 6
  • Robert J. Wood
    • 2
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of WashingtonSeattleUSA
  2. 2.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  3. 3.The Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonUSA
  4. 4.Department of Mechanical and Biomedical EngineeringThe City University of Hong KongKowloonHong Kong
  5. 5.Department of Aerospace and Mechanical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  6. 6.Google, Inc.Mountain ViewUSA

Personalised recommendations