Advertisement

Autonomous Robots

, Volume 41, Issue 5, pp 1143–1159 | Cite as

Optimal transition from hovering to level-flight of a quadrotor tail-sitter UAV

  • Atsushi OosedoEmail author
  • Satoko Abiko
  • Atsushi Konno
  • Masaru Uchiyama
Article

Abstract

A quadrotor equipped with a fixed-wing (hereinafter referred to as the quadrotor tail-sitter UAV) has been developed by authors. The quadrotor tail-sitter UAV can hover like a quadrotor and can fly like a fixed-wing airplane. The remarkable characteristic of the developed quadrotor tail-sitter UAV is that it does not use any control surfaces during any form of flight; hovering, transition flight or level flight. This paper discusses an optimal transition from hovering to level flight for the quadrotor tail-sitter UAV because transition flight is most likely to be unstable throughout flight owing to stalling of the fixed-wing. The paper proposes three transition strategies: (i) normal transition (PID feedback to a step input), (ii) minimizing the transition time, and (iii) minimizing the transition time with keeping altitude constant. To realize the above optimal transition strategies, the aerodynamic parameters of the developed quadrotor tail-sitter UAV are measured by the wind tunnel test in advance. The three strategies are experimentally verified and the comparison among the three strategies is presented.

Keywords

Unmanned aerial vehicle Quadrotor Tail-sitter aircraft Flight control Optimization Control system 

Notes

Acknowledgments

This work was supported by Grant-in-Aid for Japan society for the promotion of science fellows (25-4220).

Supplementary material

Supplementary material 1 (mpg 8772 KB)

Supplementary material 2 (mpg 14530 KB)

Supplementary material 3 (mpg 6882 KB)

References

  1. Anderson, J. D, Jr. (1969). Introduction to flight (3rd ed.). New York: McGraw-Hill.Google Scholar
  2. Blyenburgh, P. V. (1999). UAVs: An overview. Air & Space Europe, 1(5–6), 43–47.CrossRefGoogle Scholar
  3. Bouabdallah, S., Murrieri, P., & Siegwart, R. (2005). Towards autonomous indoor micro VTOL. Autonomous Robots, 18(2), 171–183.CrossRefGoogle Scholar
  4. Conroy, J., Gremillion, G., Ranganathan, B., & Humbert, J. S. (2009). Implementation of wide-field integration of optic flow for autonomous quadrotor navigation. Autonomous Robots, 27(3), 189–198.CrossRefGoogle Scholar
  5. Daniel, R. P. (2004). Aircraft design: A conceptual approach. Washington, DC: American Institute of Aeronautics and Astronautics Inc.Google Scholar
  6. Eisenbeiss, H. (2004). A mini unmanned aerial vehicle (UAV): system overview and image acquisition. In Proceedings of the image acquisiton international workshop on processing and visualization using high-resolution imagery (pp. 1–7). Pitsanulok.Google Scholar
  7. Escareño, J., Sanchez, A., Garcia, O., & Lozano, R. (2009). Modeling and global control of the longitudinal dynamics of a coaxial convertible mini-UAV in hover mode. Journal of Intelligent and Robotic Systems, 54(1–3), 261–273.CrossRefGoogle Scholar
  8. Frank, A., McGrew, J. S., Valenti, M., Levine, D., & How, J. P. (2007). Hover, transition, and level flight control design for a single-propeller indoor airplane. In Proceedings of AIAA guidance, navigation, and control conference, South Carolina, USA. doi: 10.2514/6.2007-6318.
  9. Gill, P. E., Murray, W., & Wright, M. H. (1982). Practical optimization. New York: Academic Press.zbMATHGoogle Scholar
  10. Green, W. E., & Oh. P. Y. (2005). A MAV that flies like an airplane and hovers like a helicopter. In Proceedings of the 2005 IEEE/ASME international conference on advanced intelligent mechatronics (pp. 693–698). Monterey.Google Scholar
  11. Kita, K., Konno, A., & Uchiyama, M. (2009). Hovering control of a tail-sitter VTOL aerial robot. Journal of Robotics and Mechatronics, 21(2), 277–283.CrossRefGoogle Scholar
  12. Kita, K., Konno, A., & Uchiyama, M. (2010). Transition between level flight and hovering of a tail-sitter vertical takeoff and landing aerial robot. Advanced Robotics, 24(5–6), 763–781.CrossRefGoogle Scholar
  13. Kushleyev, A., Mellinger, D., Powers, C., & Kumar, V. (2013). Towards a swarm of agile micro quadrotors. Autonomous Robots, 35(4), 287–300.CrossRefGoogle Scholar
  14. Lindsey, Q., Mellinger, D., & Kumar, V. (2012). Construction with quadrotor teams. Autonomous Robots, 33(3), 323–336.CrossRefGoogle Scholar
  15. Matsumoto, T., Kita, K., Suzuki, R., Oosedo, A., Go, K., Hoshino, Y., Konno, A., & Uchiyama, M. (2010). A hovering control strategy for a tail-sitter VTOL UAV that increases stability against large disturbance. In Proceedings of the 2010 IEEE international conference on robotics and automation (pp. 54–59). Anchorage.Google Scholar
  16. McCormick, B. W. (1969). Aerodynamics of V/STOL flight. San Diego, CA: Academic Press.Google Scholar
  17. McCormick, B. W. (1979). Aerodynamics, aeronautics, and flight mechanics. New York: Wiley.Google Scholar
  18. Michael, N., Shen, S., Mohta, K., Mulgaonkar, Y., Kumar, V., Nagatani, K., et al. (2012). Collaborative mapping of an earthquake-damaged building via groud and aerial robots. Journal of Field Robotics, 29(5), 832–841.CrossRefGoogle Scholar
  19. Oosedo, A., Konno, A., Matsumoto, T., Go, K., Masuko, K., & Uchiyama, M. (2012). Design and attitude control of a quad rotor tail-sitter vertical takeoff and landing unmanned aerial vehicle. Advanced Robotics, 26(3–4), 307–326.CrossRefGoogle Scholar
  20. Oosedo, A., Abiko, S., Konno, A., Koizumi, T., Furui, T., & Uchiyama, M. (2013). Development of a quad rotor tail-sitter VTOL UAV without control surfaces and experimental verification. In Proceedings of the 2013 IEEE international conference on robotics and automation (pp. 317–322). Karlsruhe.Google Scholar
  21. Sinha, P., Esden, P. T., Forrette, A. C., Gibboney, J. K., & Horn, G. M. (2012). Versatile, modular, extensible VTOL aerial platform with autonomous flight mode transitions. In Proceedings of the 2012 IEEE aerospace conference (pp. 1–17). Big Sky.Google Scholar
  22. Stone, H. (1999). Configuration design of a canard configured tail sitter unmanned air vehicle using multidisciplinary optimization. Ph.D. thesis, University of Sydney, Australia.Google Scholar
  23. Stone, H., & Clarke, G. (2001). Optimization of transition manoeuvres for a tail-sitter unmanned air vehicle (UAV). In: Proceedings of the 2001 Australian international aerospace congress, (Paper 105). Canberra.Google Scholar
  24. Taylor, D. J., OL, M. V., & Cord, T. (2003). SkyTote advanced cargo delivery system. In Proceedings of the 2003 AIAA/ICAS international air and space symposium and exposition the next 100 years, Dayton. doi: 10.2514/6.2003-2753
  25. Valavanis, K. P. (2007). Advances in unmanned aerial vehicles. Netherlands: Springer.CrossRefzbMATHGoogle Scholar
  26. Young, L. A., Aiken, E. W., Johnson, J. L., Demblewski, R., Andrews, J., & Klem, J. (2002). New Concepts and perspectives on micro-rotorcraft and small autonomous rotary-wing vehicles. In Proceedings of 20th AIAA Applied aerodynamics conference (pp. 312–324). St. Louis. doi: 10.2514/6.2002-2816.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Atsushi Oosedo
    • 1
    Email author
  • Satoko Abiko
    • 1
  • Atsushi Konno
    • 2
  • Masaru Uchiyama
    • 1
  1. 1.Department of Mechanical Systems and DesignTohoku UniversitySendaiJapan
  2. 2.Division of System Science and Informatics Hokkaido UniversitySapporoJapan

Personalised recommendations