Autonomous Robots

, Volume 41, Issue 5, pp 1221–1242 | Cite as

Low stiffness design and hysteresis compensation torque control of SEA for active exercise rehabilitation robots

  • Wonje Choi
  • Jongseok Won
  • Jimin Lee
  • Jaeheung ParkEmail author


Rehabilitation robots for active exercise requires compliant but consistent torque (or force) assistance (or imposition) while passive rehabilitation robots are programmed to execute certain movements for patients. This kind of torque assistance in the rehabilitation system can be provided by using SEA (Series Elastic Actuator). In this paper, low stiffness SEA and spring hysteresis compensation are proposed for the robust and accurate torque control of the rehabilitation robot. C-DSSAS (Compact Dual Spiral Spring Actuation System) is developed to implement the low stiffness SEA and a hysteresis compensation method is proposed for robust accurate torque control. Pros and cons of low stiffness SEAs are dealt with in order to explain validity of proposed application. In addition, proposed hysteresis compensation torque controller has backlash-based polynomial model and passivity-based control. Experiments of active exercise of knee were performed wearing the knee rehabilitation device using the C-DSSAS with hysteresis control. The experimental results demonstrate its improved performance of the robot in terms of the robustness and accuracy.


Rehabilitation robots Series elastic actuator Spiral spring Hysteresis Low stiffness Passive based control Backlash model 



This work have been supported by the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (2011-0011341 and 2015-055375).

Supplementary material


  1. Akdoğan, E., & Adli, M. A. (2011). The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot. Mechatronics, 21(3), 509–522.CrossRefGoogle Scholar
  2. Andrews, J. R., Harrelson, G. L., & Wilk, K. E. (2011). Physical rehabilitation of the injured athlete. Philadelphia, PA: Elsevier Saunders.Google Scholar
  3. Associated Spring. (1981) Design handbook: Engineering guide to spring design. Associated Spring, Barnes Group Inc.Google Scholar
  4. Au, S. K., Herr, H., Weber, J., Martinez-Villalpando, E. C. (2007). Powered ankle-foot prosthesis for the improvement of amputee ambulation. Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, (pp. 3020–3026), IEEE.Google Scholar
  5. Bao, J., & Lee, P. L. (2007). Process control: The passive systems approach. Berlin: Springer Science & Business Media.Google Scholar
  6. Bashash, S., & Jalili, N. (2008). A polynomial-based linear mapping strategy for feedforward compensation of hysteresis in piezoelectric actuators. Journal of Dynamic Systems, Measurement, and Control, 130(3), 031008.CrossRefGoogle Scholar
  7. Colombo, G., Joerg, M., Schreier, R., & Dietz, V. (2000). Treadmill training of paraplegic patients using a robotic orthosis. Journal of rehabilitation research and development, 37(6), 693.Google Scholar
  8. Desoer, C. A., & Vidyasagar, M. (2009). Feedback systems: Input-output properties (Vol. 55). Philadelphia, PA: SIAM.CrossRefzbMATHGoogle Scholar
  9. Díaz, I., Gil, J. J., Sánchez, E. (2011). Lower-limb robotic rehabilitation: Literature review and challenges. Journal of Robotics, 2011, 759764. doi: 10.1155/2011/759764.
  10. Foliente, G. C. (1995). Hysteresis modeling of wood joints and structural systems. Journal of Structural Engineering, 121(6), 1013–1022.CrossRefGoogle Scholar
  11. Freivogel, S., Mehrholz, J., Husak-Sotomayor, T., & Schmalohr, D. (2008). Gait training with the newly developed lokohelp-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. a feasibility study. Brain Injury, 22(7–8), 625–632.CrossRefGoogle Scholar
  12. Frey, M., Colombo, G., Vaglio, M., Bucher, R., Jorg, Matthias, & Riener, Robert. (2006). A novel mechatronic body weight support system. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 14(3), 311–321.CrossRefGoogle Scholar
  13. Ge, P., & Jouaneh, M. (1995). Modeling hysteresis in piezoceramic actuators. Precision Engineering, 17(3), 211–221.CrossRefGoogle Scholar
  14. Goffer, A. (2006) Gait-locomotor apparatus, December 26 2006. US Patent 7,153,242.Google Scholar
  15. Gorbet, R. B., Morris, K. A., & Wang, D. W. L. (2001). Passivity-based stability and control of hysteresis in smart actuators. Control Systems Technology, IEEE Transactions on, 9(1), 5–16.CrossRefGoogle Scholar
  16. Ham, Rv, Sugar, T. G., Vanderborght, B., Hollander, K. W., & Lefeber, D. (2009). Compliant actuator designs. Robotics & Automation Magazine, IEEE, 16(3), 81–94.CrossRefGoogle Scholar
  17. Hesse, S., Uhlenbrock, D., et al. (2000). A mechanized gait trainer for restoration of gait. Journal of rehabilitation research and development, 37(6), 701–708.Google Scholar
  18. Accessed 21 June 2016.
  19. Accessed 21 June 2016.
  20. Ikhouane, F., & Rodellar, J. (2007). Systems with hysteresis: Analysis, identification and control using the Bouc-Wen model. Hoboken: Wiley.CrossRefzbMATHGoogle Scholar
  21. Jafari, A., Tsagarakis, N. G., Vanderborght, B., Caldwell, D. G. (2010). A novel actuator with adjustable stiffness (awas). Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, (pp. 4201–4206), IEEE.Google Scholar
  22. Karavas, N. C., Tsagarakis, N. G., Caldwell, D. G. (2012). Design, modeling and control of a series elastic actuator for an assistive knee exoskeleton. Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference on, (pp. 1813–1819), IEEE.Google Scholar
  23. Khalil, H. K., & Grizzle, J. (2002). Nonlinear systems, vol. 3. Upper Saddle River: Prentice Hall.Google Scholar
  24. Kim, Y., Lee, J., & Park, J. (2013). Compliant joint actuator with dual spiral springs. Mechatronics, IEEE/ASME Transactions on, 18(6), 1839–1844.CrossRefGoogle Scholar
  25. Kong, K., Bae, J., & Tomizuka, M. (2009). Control of rotary series elastic actuator for ideal force-mode actuation in human-robot interaction applications. Mechatronics, IEEE/ASME Transactions on, 14(1), 105–118.CrossRefGoogle Scholar
  26. Kuhnen, K. (2003). Modeling, identification and compensation of complex hysteretic nonlinearities: A modified prandtl-ishlinskii approach. European journal of control, 9(4), 407–418.CrossRefzbMATHGoogle Scholar
  27. Kuhnen, K., & Janocha, H. (2001). Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems. Control and Intelligent systems, 29(3), 74–83.Google Scholar
  28. Laffranchi, M., Tsagarakis, N. G., Cannella, F., Caldwell, D. G. (2009). Antagonistic and series elastic actuators: a comparative analysis on the energy consumption. Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, (pp. 5678–5684), IEEE.Google Scholar
  29. Lagoda, C., Schou, A. C., Stienen, A. H. A., Hekman, E. E. G., van der Kooij, H. (2010). Design of an electric series elastic actuated joint for robotic gait rehabilitation training. Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS International Conference on, (pp. 21–26), IEEE.Google Scholar
  30. Ok, J. K., Yoo, W. S., & Sohn, J. H. (2008). New nonlinear bushing model for general excitations using bouc-wen hysteretic model. International Journal of Automotive Technology, 9(2), 183–190.CrossRefGoogle Scholar
  31. Pratt, J. E., Krupp, B. T., Morse, C. J., Collins, S. H. (2004). The roboknee: An exoskeleton for enhancing strength and endurance during walking. Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on, (Vol 3, pp. 2430–2435) , IEEE.Google Scholar
  32. Rouse, E. J., Mooney, L. M., Martinez-Villalpando, E. C., Herr, H. M. (2013). Clutchable series-elastic actuator: Design of a robotic knee prosthesis for minimum energy consumption. In Rehabilitation Robotics (ICORR), 2013 IEEE International Conference on, (pp. 1–6), IEEE.Google Scholar
  33. Schmidt, H. (2004). Hapticwalker-a novel haptic device for walking simulation, Proc. of’EuroHaptics.Google Scholar
  34. Sergi, F., Accoto, D., Carpino, G., Tagliamonte, N. L., Guglielmelli, E. (2012). Design and characterization of a compact rotary series elastic actuator for knee assistance during overground walking. Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference on, (pp. 1931–1936), IEEE.Google Scholar
  35. Veneman, J. F., Ekkelenkamp, R., Kruidhof, R., van der Helm, F. C. T., & van der Kooij, Herman. (2006). A series elastic-and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. The international journal of robotics research, 25(3), 261–281.CrossRefGoogle Scholar
  36. Veneman, J. F., Kruidhof, R., Hekman, E. E. G., Ekkelenkamp, R., Van Asseldonk, Edwin  H F, & Van Der Kooij, Herman. (2007). Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 15(3), 379–386.CrossRefGoogle Scholar
  37. Voight, M., Hoogenboom, B., & Prentice, W. (2006). Musculoskeletal interventions: Techniques for therapeutic exercise. New York: McGraw Hill Professional.Google Scholar
  38. Wang, C.-H., Foliente, G. C., Sivaselvan, M. V., & Reinhorn, A. M. (2001). Hysteretic models for deteriorating inelastic structures. Journal of Engineering Mechanics, 127(11), 1200–1202.CrossRefGoogle Scholar
  39. West, R Gary. Powered gait orthosis and method of utilizing same, February 10 2004. US Patent 6,689,075.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Wonje Choi
    • 1
  • Jongseok Won
    • 1
  • Jimin Lee
    • 1
  • Jaeheung Park
    • 1
    • 2
    Email author
  1. 1.Department of Transdisciplinary StudiesSeoul National UniversitySeoulRepublic of Korea
  2. 2.Advanced Institute of Convergence Science and TechnologySuwonRepublic of Korea

Personalised recommendations