Autonomous Robots

, Volume 41, Issue 4, pp 795–810 | Cite as

An incremental nonparametric Bayesian clustering-based traversable region detection method

  • Honggu Lee
  • Kiho KwakEmail author
  • Sungho JoEmail author


Navigation capability in complex and unknown outdoor environments is one of the major requirements for an autonomous vehicle and a robot that perform tasks such as a military mission or planetary exploration. Robust traversability estimation in unknown environments would allow the vehicle or the robot to devise control and planning strategies to maximize their effectiveness. In this study, we present a self-supervised on-line learning architecture to estimate the traversability in complex and unknown outdoor environments. The proposed approach builds a model by clustering appearance data using the newly proposed incremental nonparametric Bayesian clustering algorithm. The clusters are then classified as being either traversable or non-traversable. Because our approach effectively groups unknown regions with similar properties, while the vehicle is in motion without human intervention, the vehicle can be deployed to new environments by automatically adapting to changing environmental conditions. We demonstrate the performance of the proposed clustering algorithm through intensive experiments using synthetic and real data and evaluate the viability of the traversability estimation using real data sets collected in outdoor environment.


Autonomous driving Incremental clustering Self-supervised learning Dirichlet process mixture model Traversability prediction 



This research was supported by the MOTIE (The Ministry of Trade, Industry and Energy), Korea, under the Technology Innovation Program supervised by KEIT (Korea Evaluation Institute of Industrial Technology),10045252, Development of robot task intelligence technology.

Supplementary material

Supplementary material 1 (mp4 19016 KB)

10514_2016_9588_MOESM2_ESM.mp4 (21.8 mb)
Supplementary material 2 (mp4 22310 KB)


  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Susstrunk, S. (2012). Slic superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11), 2274–2282.CrossRefGoogle Scholar
  2. Aherne, F. J., Thacker, N. A., & Rockett, P. I. (1998). The Bhattacharyya metric as an absolute similarity measure for frequency coded data. Kybernetika, 34(4), 363–368.MathSciNetzbMATHGoogle Scholar
  3. Angelova, A., Matthies, L., Helmick, D., & Perona, P. (2007). Learning slip behavior using automatic mechanical supervision. In IEEE international conference on robotics and automation, 2007 (pp. 1741–1748). IEEE.Google Scholar
  4. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. The Journal of Machine Learning Research, 3, 993–1022.zbMATHGoogle Scholar
  5. Blei, D. M., Jordan, M. I., et al. (2006). Variational inference for Dirichlet process mixtures. Bayesian Analysis, 1(1), 121–143.MathSciNetCrossRefzbMATHGoogle Scholar
  6. Bradley, D. M., Unnikrishnan, R., & Bagnell, J. (2007). Vegetation detection for driving in complex environments. In 2007 IEEE international conference on robotics and automation (pp. 503–508). IEEE.Google Scholar
  7. Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.CrossRefGoogle Scholar
  8. Comaniciu, D., Ramesh, V., & Meer, P. (2003). Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5), 564–575.CrossRefGoogle Scholar
  9. Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science, 315(5814), 972–976.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The kitti dataset. The International Journal of Robotics Research, 32(11), 1231–1237.CrossRefGoogle Scholar
  11. Häselich, M., Arends, M., Wojke, N., Neuhaus, F., & Paulus, D. (2013). Probabilistic terrain classification in unstructured environments. Robotics and Autonomous Systems, 61(10), 1051–1059.CrossRefGoogle Scholar
  12. Heller, K. A., & Ghahramani, Z. (2005). Bayesian hierarchical clustering. In Proceedings of the 22nd international conference on machine learning (pp. 297–304). New York: ACM.Google Scholar
  13. Ho, K., Peynot, T., & Sukkarieh, S. (2014). Analyzing the impact of learning inputs on near-to-far terrain traversability estimation. In Proceedings of 2014 IEEE international conference on robotics and automation (ICRA 2014).Google Scholar
  14. Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.CrossRefzbMATHGoogle Scholar
  15. Kelly, A., Stentz, A., Amidi, O., Bode, M., Bradley, D., Diaz-Calderon, A., et al. (2006). Toward reliable off road autonomous vehicles operating in challenging environments. The International Journal of Robotics Research, 25(5–6), 449–483.CrossRefGoogle Scholar
  16. Kim, D., Sun, J., Oh, S. M., Rehg, J. M., & Bobick, A. F. (2006). Traversability classification using unsupervised on-line visual learning for outdoor robot navigation. In Proceedings of 2006 IEEE international conference on robotics and automation (ICRA 2006) (pp. 518–525). IEEE.Google Scholar
  17. Kjærgaard, M., Bayramoglu, E., Massaro, A. S., & Jensen, K. (2011). Terrain mapping and obstacle detection using Gaussian processes. In 2011 10th international conference on machine learning and applications and workshops (ICMLA) (Vol. 1, pp. 118–123). IEEE.Google Scholar
  18. Kwak, K., Huber, D. F., Badino, H., & Kanade, T. (2011). Extrinsic calibration of a single line scanning lidar and a camera. In 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3283–3289). IEEE.Google Scholar
  19. Lalonde, J. F., Vandapel, N., Huber, D. F., & Hebert, M. (2006). Natural terrain classification using three-dimensional ladar data for ground robot mobility. Journal of Field Robotics, 23(10), 839–862.CrossRefGoogle Scholar
  20. Lu, H., Jiang, L., & Zell, A. (2015). Long range traversable region detection based on superpixels clustering for mobile robots. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 546–552). IEEE.Google Scholar
  21. MacQueen, J., et al. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Oakland, CA, USA (Vol. 1, pp. 281–297).Google Scholar
  22. Munoz, D., Vandapel, N., & Hebert, M. (2009). Onboard contextual classification of 3-d point clouds with learned high-order Markov random fields. In Proceedings of 2009 IEEE international conference on robotics and automation (ICRA 2009). IEEE.Google Scholar
  23. Ng, A. Y., Jordan, M. I., Weiss, Y., et al. (2002). On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems, 2, 849–856.Google Scholar
  24. Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.CrossRefzbMATHGoogle Scholar
  25. Ott, L., & Ramos, F. (2012). Unsupervised incremental learning for long-term autonomy. In Proceedings of 2012 IEEE international conference on robotics and automation (ICRA 2012) (pp. 4022–4029). IEEE.Google Scholar
  26. Santamaria-Navarro, À., Teniente, E. H., Morta, M., & Andrade-Cetto, J. (2015). Terrain classification in complex three-dimensional outdoor environments. Journal of Field Robotics, 32(1), 42–60.CrossRefGoogle Scholar
  27. Shneier, M., Chang, T., Hong, T., Shackleford, W., Bostelman, R., & Albus, J. S. (2008). Learning traversability models for autonomous mobile vehicles. Autonomous Robots, 24(1), 69–86.CrossRefGoogle Scholar
  28. Silver, D., Bagnell, J.A., & Stentz, A. (2012). Active learning from demonstration for robust autonomous navigation. In Proceedings of 2012 IEEE international conference on robotics and automation (ICRA 2012) (pp. 200–207). IEEE.Google Scholar
  29. Sirinukunwattana, K., Savage, R. S., Bari, M. F., Snead, D. R., & Rajpoot, N. M. (2013). Bayesian hierarchical clustering for studying cancer gene expression data with unknown statistics. PLoS One, 8(75), 748.Google Scholar
  30. Sofman, B., Lin, E., Bagnell, J. A., Cole, J., Vandapel, N., & Stentz, A. (2006). Improving robot navigation through self-supervised online learning. Journal of Field Robotics, 23(11–12), 1059–1075.CrossRefGoogle Scholar
  31. Stavens, D., & Thrun, S. (2006). A self-supervised terrain roughness estimator for off-road autonomous driving. In In proceedings of the conference on uncertainty in AI (UAI), Citeseer.Google Scholar
  32. Sun, J., Mehta, T., Wooden, D., Powers, M., Rehg, J., Balch, T., et al. (2006). Learning from examples in unstructured, outdoor environments. Journal of Field Robotics, 23(11–12), 1019–1036.CrossRefGoogle Scholar
  33. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., et al. (2007). Stanley: The robot that won the darpa grand challenge. In The 2005 DARPA grand challenge (pp. 1–43). Berlin: Springer.Google Scholar
  34. Trautmann, E., & Ray, L. (2011). Mobility characterization for autonomous mobile robots using machine learning. Autonomous Robots, 30(4), 369–383.CrossRefGoogle Scholar
  35. Tse, R., Ahmed, N. R., & Campbell, M. (2015). Unified terrain mapping model with Markov random fields. IEEE Transactions on Robotics, 31(2), 290–306.CrossRefGoogle Scholar
  36. Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M., et al. (2008). Autonomous driving in urban environments: Boss and the urban challenge. Journal of Field Robotics, 25(8), 425–466.CrossRefGoogle Scholar
  37. Wang, Q., Fang, J., & Yuan, Y. (2015). Adaptive road detection via context-aware label transfer. Neurocomputing, 158(C), 174–183.CrossRefGoogle Scholar
  38. Wellington, C., Courville, A., & Stentz, A. T. (2006). A generative model of terrain for autonomous navigation in vegetation. The International Journal of Robotics Research, 25(12), 1287–1304.CrossRefGoogle Scholar
  39. Zhou, S., Xi, J., McDaniel, M. W., Nishihata, T., Salesses, P., & Iagnemma, K. (2012). Self-supervised learning to visually detect terrain surfaces for autonomous robots operating in forested terrain. Journal of Field Robotics, 29(2), 277–297.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of ComputingKorea Advanced Institute of Science and Technology (KAIST)DaejeonSouth Korea
  2. 2.Agency for Defense DevelopmentDaejeonSouth Korea

Personalised recommendations