Autonomous Robots

, Volume 41, Issue 4, pp 989–1011 | Cite as

Decentralized simultaneous multi-target exploration using a connected network of multiple robots

  • Thomas Nestmeyer
  • Paolo Robuffo Giordano
  • Heinrich H. Bülthoff
  • Antonio FranchiEmail author


This paper presents a novel decentralized control strategy for a multi-robot system that enables parallel multi-target exploration while ensuring a time-varying connected topology in cluttered 3D environments. Flexible continuous connectivity is guaranteed by building upon a recent connectivity maintenance method, in which limited range, line-of-sight visibility, and collision avoidance are taken into account at the same time. Completeness of the decentralized multi-target exploration algorithm is guaranteed by dynamically assigning the robots with different motion behaviors during the exploration task. One major group is subject to a suitable downscaling of the main traveling force based on the traveling efficiency of the current leader and the direction alignment between traveling and connectivity force. This supports the leader in always reaching its current target and, on a larger time horizon, that the whole team realizes the overall task in finite time. Extensive Monte Carlo simulations with a group of several quadrotor UAVs show the scalability and effectiveness of the proposed method and experiments validate its practicability.


Multi-robot coordination Path-planning Decentralized exploration Connectivity maintenance 

Supplementary material

10514_2016_9578_MOESM1_ESM.mp4 (6.4 mb)
Supplementary material 1 (mp4 6542 KB)

Supplementary material 2 (mp4 5365 KB)

10514_2016_9578_MOESM3_ESM.mp4 (29.9 mb)
Supplementary material 3 (mp4 30568 KB)

Supplementary material 4 (mp4 5990 KB)


  1. Antonelli, G., Arrichiello, F., Chiaverini, S., & Setola, R. (Aug 2005). A self-configuring MANET for coverage area adaptation through kinematic control of a platoon of mobile robots. In 2005 IEEE/RSJ international conference on intelligent robots and systems (pp. 1332–1337), Edmonton, Canada.Google Scholar
  2. Antonelli, G., Arrichiello, F., Chiaverini, S., & Setola, R. (Mar 2006). Coordinated control of mobile antennas for ad-hoc networks in cluttered environments. In 9th International conference on intelligent autonomous systems, Tokyo, Japan.Google Scholar
  3. Bektas, T. (2006). The multiple traveling salesman problem: An overview of formulations and solution procedures. Omega, 34(3), 209–219.CrossRefGoogle Scholar
  4. Biagiotti, L., & Melchiorri, C. (2008) Trajectory planning for automatic machines and robots. Springer. ISBN 978-3540856283.Google Scholar
  5. Burgard, W., Moors, M., Stachniss, C., & Schneider, F. (2005). Coordinated multi-robot exploration. IEEE Transactions on Robotics and Automation, 21(3), 376–386.CrossRefGoogle Scholar
  6. Durham, J. W., Franchi, A., & Bullo, F. (2012). Distributed pursuit-evasion without global localization via local frontiers. Autonomous Robots, 32(1), 81–95.CrossRefGoogle Scholar
  7. Faigl, J., & Hollinger, G. A. (Sep 2014). Unifying multi-goal path planning for autonomous data collection. In 2013 IEEE/RSJ international conference on intelligent robots and systems (pp. 2937–2942), Chicago, IL.Google Scholar
  8. Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(98), 298–305.MathSciNetzbMATHGoogle Scholar
  9. Franchi, A., Freda, L., Oriolo, G., & Vendittelli, M. (2009). The sensor-based random graph method for cooperative robot exploration. IEEE/ASME Transactions on Mechatronics, 14(2), 163–175.CrossRefGoogle Scholar
  10. Freeman, R. A., Yang, P., & Lynch, K. M. (Jan 2006). Stability and convergenceproperties of dynamic average consensus estimators. In 45thIEEE conference on decision and control (pp. 338–343), San Diego, CA.Google Scholar
  11. Grabe, V., Riedel, M., Bülthoff, H. H., Robuffo Giordano, P., & Franchi, A. (Sep 2013). The TeleKyb framework for a modular and extendible ROS-based quadrotor control. In 6th European conference on mobile robots (pp. 19–25), Barcelona, Spain.Google Scholar
  12. Hollinger, G., & Singh, S. (2012). Multirobot coordination with periodic connectivity: Theory and experiments. IEEE Transactions on Robotics, 28(4), 967–973.CrossRefGoogle Scholar
  13. Howard, A., Parker, L. E., & Sukhatme, G. S. (2006). Experiments with a large heterogeneous mobile robot team: Exploration, mapping, deployment and detection. The International Journal of Robotics Research, 25(5–6), 431–447.CrossRefGoogle Scholar
  14. Jensfelt, P., & Kristensen, S. (2001). Active global localization for a mobile robot using multiple hypothesis tracking. IEEE Transactions on Robotics and Automation, 17(5), 748–760.CrossRefGoogle Scholar
  15. Lächele, J., Franchi, A., Bülthoff, H. H., & Robuffo Giordano, P. (2012). SwarmSimX: Real-time simulation environment for multi-robot systems. In I. Noda, N. Ando, D. Brugali, & J. J. Kuffner (Eds.), 3rd international conference on simulation, modeling, and programming for autonomous robots. Lecture Notes in Computer Science (Vol. 7628, pp. 375–387). Springer.Google Scholar
  16. Lim, H., & Kim, C. (2001). Flooding in wireless ad hoc networks. Computer Communications, 24(3–4), 353–363.CrossRefGoogle Scholar
  17. Lynch, N. A. (1997). Distributed algorithms. Morgan Kaufmann, ISBN 1558603484.Google Scholar
  18. Masone, C., Franchi, A., Bülthoff, H. H., & Robuffo Giordano, P. (Oct 2012) Interactive planning of persistent trajectories for human-assisted navigation of mobile robots. In 2012 IEEE/RSJ international conference on intelligent robots and systems (pp. 2641–2648), Vilamoura, Portugal.Google Scholar
  19. Mistler, V., Benallegue, A., & M’Sirdi, N. K. (Sep 2001). Exact linearization and noninteracting control of a 4 rotors helicopter via dynamic feedback. In 10th IEEE internationl symposium on robots and human interactive communications (pp. 586–593), Bordeaux, Paris, France.Google Scholar
  20. Mosteo, A. R., Montano, L., & Lagoudakis, M. G. (Nov 2008). Guaranteed-performance multi-robot routing under limited communication range. In 9th international symposium on distributed autonomous robotic systems (pp. 491–502), Tsukuba, Japan.Google Scholar
  21. Murphy, R., Tadokoro, S., Nardi, D., Jacoff, A., Fiorini, P., Choset, H., & Erkmen, A. (2008). Search and rescue robotics. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics (pp. 1151–1173). Springer.Google Scholar
  22. Nestmeyer, T., Robuffo Giordano, P., & Franchi, A. (May 2013a). Multi-target simultaneous exploration with continual connectivity.In 2nd international work. on crossing the reality gap—From single tomulti- to many robot systems, at 2013 IEEE international conference on roboticsand automation, Karlsruhe, Germany.Google Scholar
  23. Nestmeyer, T., Robuffo Giordano, P., & Franchi, A. (Oct 2013b). Human-assisted parallel multi-target visiting in a connected topology. In 6th International work. on human-friendly robotics, Rome, Italy.Google Scholar
  24. Olfati-Saber, R., & Murray, R. M. (Jun 2003). Consensus protocols for networks of dynamic agents. In 2003 American control conference (pp. 951–956), Denver, CO.Google Scholar
  25. Olfati-Saber, R., & Murray, R. M. (2004). Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 49(9), 1520–1533.MathSciNetCrossRefGoogle Scholar
  26. Pasqualetti, F., Franchi, A., & Bullo, F. (2012). On cooperative patrolling: Optimal trajectories, complexity analysis, and approximation algorithms. IEEE Transactions on Robotics, 28(3), 592–606.CrossRefGoogle Scholar
  27. Pei, Y., & Mutka, M. W. (May 2012). Steiner traveler: Relay deployment for remote sensing in heterogeneous multi-robot exploration. In 2012 IEEE international conference on robotics and automation (pp. 1551–1556), St. Paul, MN.Google Scholar
  28. Pei, Y., Mutka, M. W., & Xi, N. (May 2010). Coordinated multi-robot real-time exploration with connectivity and bandwidth awareness. In 2010 IEEE international conference on robotics and automation (pp. 5460–5465), Anchorage, AK.Google Scholar
  29. Robuffo Giordano, P., Franchi, A., Secchi, C., & Bülthoff, H. H. (2013). A passivity-based decentralized strategy for generalized connectivity maintenance. The International Journal of Robotics Research, 32(3), 299–323.CrossRefGoogle Scholar
  30. Stump, E., Jadbabaie, A., & Kumar, V. (May 2008) Connectivity management in mobile robot teams. In 2008 IEEE international conference on robotics and automation (pp. 1525–1530), Pasadena, CA.Google Scholar
  31. Stump, E., Michael, N., Kumar, V., & Isler, V. (2011) Visibility-based deployment of robot formations for communication maintenance. In 2011 IEEE international conference on robotics and automation (pp. 4489–4505), Shanghai, China.Google Scholar
  32. Tardioli, D., Mosteo, A. R., Riazuelo, L., Villarroel, J. L., & Montano, L. (2010). Enforcing network connectivity in robot team missions. The International Journal of Robotics Research, 29(4), 460–480.CrossRefGoogle Scholar
  33. Yang, P., Freeman, R. A., Gordon, G. J., Lynch, K. M., Srinivasa, S. S., & Sukthankar, R. (2010). Decentralized estimation and control of graph connectivity for mobile sensor networks. Automatica, 46(2), 390–396.MathSciNetCrossRefzbMATHGoogle Scholar
  34. Zavlanos, M. M., & Pappas, G. J. (2007). Potential fields for maintaining connectivity of mobile networks. IEEE Transaction on Robotics, 23(4), 812–816.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Thomas Nestmeyer
    • 1
  • Paolo Robuffo Giordano
    • 2
  • Heinrich H. Bülthoff
    • 3
  • Antonio Franchi
    • 4
    • 5
    Email author
  1. 1.Max Planck Institute for Intelligent SystemsTübingenGermany
  2. 2.CNRS at Irisa and Inria Rennes Bretagne AtlantiqueRennes cedexFrance
  3. 3.Max Planck Institute for Biological CyberneticsTübingenGermany
  4. 4.CNRS, LAASToulouseFrance
  5. 5.Univ de Toulouse, LAASToulouseFrance

Personalised recommendations