Advertisement

Autonomous Robots

, Volume 41, Issue 4, pp 967–987 | Cite as

Multi-resolution map building and loop closure with omnidirectional images

  • Hemanth Korrapati
  • Youcef Mezouar
Article

Abstract

A topological mapping approach for omnidirectional images capable of answering loop closure queries at multiple resolutions is presented. The environment is mapped hierarchically using two layers. The first layer consists of individual images and the second layer represents regions of the environment composed of groups of images from the first layer. A hierarchical algorithm is formulated that exploits this map structure for an efficient and accurate loop closure without the need of geometric verification. The vital parameters of loop closure are automatically learned from training data. Performance of our loop closure algorithm is experimentally evaluated on various publicly available datasets and compared to two state of the art techniques. The results show that agreeable performance is achieved even on low quality datasets without the need for geometric verification of loop closures common among many contemporary approaches.

Keywords

Topological mapping Omnidirectional vision Loop closure 

Notes

Acknowledgments

This work was partly funded by the Auvergne Region and the French government research program Investissements d’avenir through the RobotEx Equipment of Excellence (ANR-10-EQPX-44) and the LABEX IMOBS3 (ANR-7107-LABX-716701).

References

  1. Aggarwal, C. C., & Chandan, K. R. (2013). Data clustering: Algorithms and applications. Chapman & Hall/CRC, Data mining and knowledge discovery series (Book 31).Google Scholar
  2. Aihara, N., Iwasa, H., Yokoya, N., & Takemura, H. (1998). Memory-based self-localization using omnidirectional images. In Proceedings of international conference on pattern recognition (ICPR) (Vol. 2, pp. 1799–1803).Google Scholar
  3. Anati, R. & Daniilidis, K. (2009). Constructing topological maps using markov random fields and loop-closure detection. In Advances in Neural Information Processing Systems, 37–45.Google Scholar
  4. Angeli, A., Doncieux, S., Meyer, J.-A., & Filliat, D. (2009). Visual topological slam and global localization. In Proceedings of IEEE international conference on robotics and automation (ICRA) (pp. 4300–4305).Google Scholar
  5. Angeli, A., Filliat, D., Doncieux, S., & Meyer, J.-A. (2008). Fast and incremental method for loop-closure detection using bags of visual words. IEEE Transactions on Robotics, 24, 1027–1037.CrossRefGoogle Scholar
  6. Bay, H., Tuytelaars, T., & Van Gool, L. (2008). SURF: Speeded up robust features. Computer Vision and Image Understanding (CVIU), 110(3), 346–359.CrossRefGoogle Scholar
  7. Bhattacharyya, A. (1943). On a measure of divergence between two statistical populations defined by their probability distributions. Bulletin of the Calcutta Mathematical Society, 35, 99–109.MathSciNetzbMATHGoogle Scholar
  8. Cadena, C., Galvez-Lopez, D., Ramos, F., Tardos, J.D., & Neira, J. (2010). Robust place recognition with stereo cameras. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 5182–5189)Google Scholar
  9. Calonder, M., Lepetit, V., Strecha, C., & Fua, P. (2010). BRIEF: Binary robust independent elementary features. In 11th European conference on computer vision (ECCV).Google Scholar
  10. Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, Christoph, & Fua, Pascal. (2012). Brief: Computing a local binary descriptor very fast. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(7), 1281–1298.CrossRefGoogle Scholar
  11. Cummins, M. & Newman, P. (2009). Highly scalable appearance-only SLAM - FAB-MAP 2.0. In Proceedings of robotics: Science and systems (RSS). USA.Google Scholar
  12. Cummins, M. & Newman, P. (2010). Appearance-only SLAM at large scale with FAB-MAP 2.0, The International Journal of Robotics Research.Google Scholar
  13. Cummins, M., & Newman, P. (2008). FAB-MAP: Probabilistic localization and mapping in the space of appearance. The International Journal of Robotics Research (IJRR), 24, 647–665.CrossRefGoogle Scholar
  14. Douze, M., Jégou, H., Sandhawalia, H., Amsaleg, L., & Schmid, C. (2009). Evaluation of gist descriptors for web-scale image search. In Proceedings of the ACM international conference on image and video retrieval (CIVR). New York.Google Scholar
  15. Dudek, G., & Jugessur, D. (2000). Robust place recognition using local appearance based methods. In Proceedings of IEEE international conference on robotics and automation (ICRA) (Vol.2, pp. 1030–1035).Google Scholar
  16. Ferreira, F., Santos, V., & Dias, J. (2006). Integration of multiple sensors using binary features in a bernoulli mixture model. In Proceedings of IEEE international conference on multi-sensor fusion and integration for intelligent systems. (pp. 104–109)Google Scholar
  17. Filliat, D. (2007). A visual bag of words method for interactive qualitative localization and mapping. In Proceedings of IEEE international conference on robotics and automation (ICRA) (pp. 3921–3926).Google Scholar
  18. Fraundorfer, F., Engels, C., & Nistér, D. (2007). Topological mapping,localization and navigation using image collections. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3872–3877).Google Scholar
  19. Galvez-Lopez, D., & Tardos, J.D. (2011). Real-time loop detection with bags of binary words. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 51–58).Google Scholar
  20. Hartigan, J. A., & Wong, M. A. (1979). A K-means clustering algorithm. Applied Statistics, 28, 100–108.CrossRefzbMATHGoogle Scholar
  21. Ho, K., & Newman, P. (2005). Multiple map intersection detection using visual appearance. In International conference on computational intelligence, robotics and autonomous systems.Google Scholar
  22. Ho, K., & Newman, P. (2005). SLAM-loop closing with visually salient features. In Proceedings of IEEE international conference on robotics and automation (ICRA).Google Scholar
  23. Ho, K. L., & Newman, P. (2007). Detecting loop closure with scene sequences. International Journal of Computer Vision (IJCV), 74(3), 261–286.CrossRefGoogle Scholar
  24. Jeffreys, H. (1948). Theory of probability. Oxford: Oxford University Press.zbMATHGoogle Scholar
  25. Jegou, H., Douze, M., Schmid, C., & Perez, P. (2010). Aggregating local descriptors into a compact image representation. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3301–3311).Google Scholar
  26. Jgou, H., Perronnin, F., Douze, M., Sanchez, J., Prez, P., & Schmid, C. (2012). Aggregating local images descriptors into compact codes. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 34, 1704–1716.CrossRefGoogle Scholar
  27. Jogan, M., & Leonardis, A. (1999). Panoramic eigen images for spatial localisation. In Proceedings of the 8th international conference on computer analysis of images and patterns (CAIP) (pp. 558-567). London, UK.Google Scholar
  28. Koller, D., & Friedman, N. (2009). Probabilistic graphical models. Cambridge: The MIT Press.zbMATHGoogle Scholar
  29. Korrapati, H., Courbon, J., Mezouar, Y., & Martinet, P. (2012). Image Sequence Partitioning for Outdoor Mapping. In International conference on robotics and automation (ICRA).Google Scholar
  30. Korrapati, H., Uzer, F., & Mezouar, Y. (2013). Hierarchical visual mapping with omnidirectional images. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3684–3690).Google Scholar
  31. Korrapati, P., & Mezouar, Y. (2014). Vision-based sparsetopological mapping. Robotics and Autonomous Systems (RAS), 62, 1259–1270.CrossRefGoogle Scholar
  32. Koseck, J., Li, F., & Yang, X. (2005). Global localization and relative positioning based on scale-invariant keypoints. Robotics and Autonomous Systems, 52(1), 27–38.CrossRefGoogle Scholar
  33. Kröse, B. J. A., Vlassis, N., Bunschoten, R., & Motomura, Y. (2001). A probabilistic model for appearance-based robot localization. Image and Vision Computing, 19(6), 381–391.CrossRefGoogle Scholar
  34. Li, F. & Kosecká, J. (2006). Probabilistic location recognition using reduced feature set. In Proceedings of IEEE international conference on robotics and automation (ICRA). (pp. 3405–3410)Google Scholar
  35. Liu, M. & Siegwart, R. (2012). DP-FACT: Towards topological mapping and scene recognition with color for omnidirectional camera. In IEEE international conference on robotics and automation (ICRA).Google Scholar
  36. Liu, Y. & Zhang, H. (2012). Visual loop closure detection with a compact image descriptor. In IEEE/RSJ international conference on in intelligent robots and systems (IROS) (pp. 1051–1056)Google Scholar
  37. Liu, M., Scaramuzza, D., Pradalier, C., Siegwart, R., Chen, Q. (2009). Scene recognition with omnidirectional vision for topological map using lightweight adaptive descriptors. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 116–121).Google Scholar
  38. Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision (IJCV), 60, 91–110.CrossRefGoogle Scholar
  39. Mahalanobis, P. C. (1936). On the generalised distance in statistics. Proceedings of the National Institute of Sciences of India, 2(1), 49–55.MathSciNetzbMATHGoogle Scholar
  40. Majdik, A., Galvez-Lopez, D., Lazea, G., & Castellanos, J.A. (2011). Adaptive appearance based loop-closing in heterogeneous environments. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1256–1263)Google Scholar
  41. Menegatti, E., Maeda, T., & Ishiguro, H. (2004). Image-based memory for robot navigation using properties of omnidirectional images. Robotics and Autonomous Systems (RAS), 47(4), 251–267.CrossRefGoogle Scholar
  42. Murillo, C., Campos, P., Kosecka, J., & Guerrero, J. (2010). Gist vocabularies in omnidirectional images for appearance based mapping and localization. In Proceedings of the 10th IEEE workshop on omnidirectional vision,camera networks and non-classical cameras (OMNIVIS), held with robotics: Science and systems.Google Scholar
  43. Murillo, A. C., Sagus, C., Guerrero, J. J., Goedem, T., Tuyte-laars, T., & Van Gool, L. (2007). From omnidirectional images to hierarchical localization. Robotics and Autonomous Systems, 55, 372–382.CrossRefGoogle Scholar
  44. Murillo, A. C., Singh, G., Kosecká, J., & Guerrero, J. J. (2013). Localization in urban environments using a panoramic gist descriptor. IEEE Transactions on Robotics, 29(1), 2013.CrossRefGoogle Scholar
  45. Newman, P., Cole, D., & Ho, K. (2006). Outdoor slam using visual appearance and laser ranging. In Proceedings of IEEE international conference on robotics and automation (ICRA) (pp. 1180-1187).Google Scholar
  46. Nistér, D. & Stewenius, H. (2006). Scalable recognition with a vocabulary tree. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR) (Vol. 2, pp. 2161–2168). USA.Google Scholar
  47. Nourani-Vatani, N., & Pradalier, C. (2010). Scene change detection for vision-based topological mapping and localization. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3792–3797.Google Scholar
  48. Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision (IJCV), 42(3), 145–175.CrossRefzbMATHGoogle Scholar
  49. Philbin, J., Chum, O., Isard, M., Sivic, J., & Zisserman, A. (2008). Lost in quantization: Improving particular object retrieval in large scale image databases. In IEEE conference on computer vision and pattern recognition (CVPR).Google Scholar
  50. Ranganathan, A. (2010). Pliss: Detecting and labeling places using online change-point detection. Robotics: Science and Systems (RSS).Google Scholar
  51. Rituerto, A., Murillo, A. C., & Guerrero, J. J. (2014). Semantic labeling for indoor topological mapping using a wearable catadioptric system. Robotics and Autonomous Systems, 62(5), 2014.CrossRefGoogle Scholar
  52. Rublee, E., Rabaud, V., Konolige, K., & Gary R. (2011). Bradski: ORB: An efficient alternative to SIFT or SURF. In International conference on computer vision (ICCV).Google Scholar
  53. Schindler, G., Brown, M., & Szeliski, R. (2007). City-scale location recognition. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1–7)Google Scholar
  54. Sim, R., & Dudek, G. (1998). Mobile robot localization from learned landmarks. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS) (Vol. 2).Google Scholar
  55. Sivic, J., & Zisserman, A., Video Google: A Text Retrieval Approach to Object Matching in Videos. In Proceedings of the international conference on computer vision (ICCV).Google Scholar
  56. Sivic, J., & Zisserman, A. (2003). Video google: Efficient visual search of videos. Toward category-level object recognition, Lecture Notes in Computer science (pp. 127–144). Berlin: Springer.Google Scholar
  57. Sunderhauf, N., & Protzel, P. (2011). Brief-gist - closing the loop by simple means. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1234–1241)Google Scholar
  58. Tapus, A. & Siegwart, R. (2005). Incremental robot mapping with fingerprints of places. In IEEE/RSJ international conference on in intelligent robots and systems (IROS) (pp. 2429–2434)Google Scholar
  59. Ulrich, I., & Nourbakhsh, I. (2000). Appearance-based place recognition for topological localization. In Proceedings of IEEE international conference on robotics and automation (ICRA), (Vol. 2, pp. 1023–1029).Google Scholar
  60. Valgren, C., Duckett, T., & Lilienthal, A. J. (2007). Incremental spectral clustering and its application to topological mapping. In IEEE international conference on robotics and automation (ICRA) (pp. 4283–4288).Google Scholar
  61. Wang, Junqiu, Cipolla, R., & Zha, Hongbin (2005). Vision-based global localization using a visual vocabulary. In Proceedings of IEEE international conference on robotics and automation (ICRA) (pp. 4230–4235).Google Scholar
  62. Wolf, J., Burgard, W., & Burkhardt, H. (2005). Robust vision-based localization by combining an image retrieval system with monte-carlo localization. IEEE Transactions on Robotics, 21(2), 208–216.CrossRefGoogle Scholar
  63. Zivkovic, Z., Bakker, B., & Kröse, B.J.A. (2005). Hierarchical map building using visual landmarks and geometric constraints. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2480–2485).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Université Clermont AuvergneSigma-Clermont, Institut PascalClermont-FerrandFrance
  2. 2.CNRS, UMR 6602 IPAubiereFrance

Personalised recommendations