Autonomous Robots

, Volume 41, Issue 2, pp 473–493 | Cite as

An accurate and efficient navigation system for omnidirectional robots in industrial environments

  • Christoph Sprunk
  • Boris Lau
  • Patrick Pfaff
  • Wolfram Burgard


Enhanced logistics is widely regarded as a key technology to increase flexibility and cost efficiency of today’s factories. For example, fully autonomous transport vehicles aim to gradually replace conveyor belts, guided vehicles, and manual labor. In this context, especially omnidirectional robots are appealing thanks to their advanced maneuvering capabilities. In industrial applications, however, accuracy as well as safety and efficiency are key requirements for successful navigation systems. In this paper, we present an accurate navigation system for omnidirectional robots. Our system includes dedicated modules for mapping, localization, trajectory generation and robot control. It has been designed for accurate execution by devising smooth, curvature continuous trajectories, by planning appropriate velocities and by accounting for platform and safety constraints. In this way, it completely utilizes the maneuvering capabilities of omnidirectional robots and optimizes trajectories with respect to time of travel. We present extensive experimental evaluations in simulation and in changing real-world environments to demonstrate the robustness and accuracy of our system.


Navigation System Voronoi Diagram Trajectory Generation Path Planner Initial Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has partly been supported by the European Commission under Grant Agreement Numbers FP7-248258-First-MM, FP7-260026-TAPAS, and FP7-248873-RADHAR.


  1. Balkcom, D. J., Kavathekar, P. A., & Mason, M. T. (2006). Time-optimal trajectories for an omni-directional vehicle. International Journal of Robotics Research (IJRR), 25(10), 985–999.CrossRefzbMATHGoogle Scholar
  2. Bobrow, J. E., Dubowsky, S., & Gibson, J. (1985). Time-optimal control of robotic manipulators along specified paths. International Journal of Robotics Research (IJRR), 4(3), 3–17.CrossRefGoogle Scholar
  3. Brock, O., & Khatib, O. (2002). Elastic strips: A framework for motion generation in human environments. The International Journal of Robotics Research, 21(12), 1031–1052.CrossRefGoogle Scholar
  4. Byravan, A., Boots, B., Srinivasa, S., & Fox, D. (2014). Space-time functional gradient optimization for motion planning. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 6499–6506), May (2014). doi: 10.1109/ICRA.2014.6907818.
  5. Connors, J., & Elkaim, G. (2007). Manipulating B-Spline based paths for obstacle avoidance in autonomous ground vehicles. In National Meeting of the Institute of Navigation, San Diego, USA 2007.Google Scholar
  6. Dellaert, F., & Kaess, M. (2006). Square root SAM: Simultaneous localization and mapping via square root information smoothing. International Journal of Robotics Research (IJRR), 25(12), 1181–1203.CrossRefzbMATHGoogle Scholar
  7. Dellaert, F., Fox, D., Burgard, W., & Thrun, S. (1999). Monte Carlo Localization for mobile robots. In IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
  8. Foskey, M., Garber, M., Lin, M.C., & Manocha, D. (2001). A voronoi-based hybrid motion planner. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  9. Fox, D. (2003). Adapting the sample size in particle filters through KLD-sampling. Interntaional Journal of Robotics Research (IJRR), 22(12), 985–1003.CrossRefGoogle Scholar
  10. Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance. IEEE Robotics & Automation Magazine, 4(1), 23–33.CrossRefGoogle Scholar
  11. Fraichard, T., & Delsart, V. (2009). Navigating dynamic environments with trajectory deformation. Journal of Computing and Information Technology, 17, 27–36.CrossRefGoogle Scholar
  12. Grisetti, G., Kummerle, R., Stachniss, C., & Burgard, W. (2010). A tutorial on graph-based SLAM. IEEE Intelligent Transportation Systems Magazine, 2(4), 31–43.CrossRefGoogle Scholar
  13. Guizzo, E. (2008). Three engineers, hundreds of robots, one warehouse. IEEE Spectrum, 45(7), 26–34.CrossRefGoogle Scholar
  14. Hershberger, J., & Snoeyink, J. (1992). Speeding up the Douglas-Peucker line-simplification algorithm. Technical report, University of British Columbia.Google Scholar
  15. Hornung, A., Phillips, M., Jones, E.G., Bennewitz, M., Likhachev, M., & Chitta, S. (2012). Navigation in three-dimensional cluttered environments for mobile manipulation. In IEEE Interntaional Conference on Robotics and Automation (ICRA).Google Scholar
  16. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., & Schaal, S. (2011). Stomp: Stochastic trajectory optimization for motion planning. In IEEE Interntaional Conference on Robotics and Automation (ICRA) (pp. 4569–4574) May 2011. doi: 10.1109/ICRA.2011.5980280.
  17. Kalmár-Nagy, T., D’Andrea, R., & Ganguly, P. (2004). Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle. Robotics and Autonomous Systems, 46(1), 47–64.CrossRefGoogle Scholar
  18. Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. International Journal of Robotics Research (IJRR), 30(7), 846–894.CrossRefzbMATHGoogle Scholar
  19. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., & Burgard, W. (2011). g2o: A general framework for graph optimization. In IEEE Interntaional Conference on Robotics and Automation (ICRA).Google Scholar
  20. Kümmerle, R., Ruhnke, M., Steder, B., Stachniss, C., & Burgard, W. (2014). Autonomous robot navigation in highly populated pedestrian zones. Journal of Field Robotics, 32, 565–589.CrossRefGoogle Scholar
  21. Lamiraux, F., Bonnafous, D., & Lefebvre, O. (2004). Reactive path deformation for nonholonomic mobile robots. IEEE Transactions on Robotics, 20(6), 967–977.CrossRefGoogle Scholar
  22. Lau, B., Sprunk, C., & Burgard, W. (2009). Kinodynamic motion planning for mobile robots using splines. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  23. Lau, B., Sprunk, C., & Burgard, W. (2013). Efficient grid-based spatial representations for robot navigation in dynamic environments. Robotics and Autonomous Systems, 61(10), 1116–1130.CrossRefGoogle Scholar
  24. Likhachev, M., & Ferguson, D. (2009). Planning long dynamically feasible maneuvers for autonomous vehicles. International Journal of Robotics Research (IJRR), 28(8), 933–945.CrossRefGoogle Scholar
  25. Liu, Y., Zhu, J. J., Williams, R. L, I. I., & Wu, J. (2008). Omni-directional mobile robot controller based on trajectory linearization. Robotics and Autonomous Systems, 56(5), 461–479.CrossRefGoogle Scholar
  26. Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., & Konolige, K. (2010). The office marathon: Robust navigation in an indoor office environment. In IEEE Intlernational Conference on Robotics and Automation (ICRA).Google Scholar
  27. Maček, K., Vasquez, G., Fraichard, T., & Siegwart, R. (2009). Towards safe vehicle navigation in dynamic urban scenarios. Automatika, 50(3–4), 184–194.Google Scholar
  28. Montemerlo, D., Roy, N., & Thrun, S. (2003). Perspectives on standardization in mobile robot programming: The Carnegie Mellon navigation (CARMEN) toolkit. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  29. Muir, P. (1988). Modeling and Control of Wheeled Mobile Robots. PhD thesis, Carnegie Mellon University, Pittsburgh, PA.Google Scholar
  30. Olson, E. (2008). Robust and efficient robotic mapping. PhD thesis, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science.Google Scholar
  31. Purwin, O., & D’Andrea, R. (2006). Trajectory generation and control for four wheeled omnidirectional vehicles. Robotics and Autonomous Systems, 54, 13–22.CrossRefGoogle Scholar
  32. Quinlan, S., & Khatib, O. (1993). Elastic bands: Connecting path planning and control. In IEEE Inernational Conference on Robotics and Automation (ICRA) (pp. 802–807).Google Scholar
  33. Ratliff, N., Zucker, M., Bagnell, J.A., & Srinivasa, S. (2009). Chomp: Gradient optimization techniques for efficient motion planning. In IEEE Intl. Conference on Robotics and Automation (ICRA) (pp. 489–494).Google Scholar
  34. Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In Interntaional Conference on Neural Networks.Google Scholar
  35. Roewekaemper, J., Sprunk, C., Tipaldi, G.D., Stachniss, C., Pfaff, P., & Burgard, W.(2012). On the position accuracy of mobile robot localization based on particle filters combined with scan matching. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  36. Rojas, R., & Förster, A. G. (2006). Holonomic control of a robot with an omnidirectional drive. Künstliche Intelligenz, 20(2), 12–17.Google Scholar
  37. Rufli, M., Ferguson, D., Siegwart, R.: Smooth path planning in constrained environments. In IEEE Intl. Conference on Robotics and Automation (ICRA), (2009).Google Scholar
  38. Schulman, J., Ho, J., Lee, A., Awwal, I., Bradlow, H., & Abbeel, P. (2013). Finding locally optimal, collision-free trajectories with sequential convex optimization. In Robotics: Science and Systems (Vol. 9, pp. 1–10).Google Scholar
  39. Shin, K. G., & McKay, N. D. (1985). Minimum-time control of robotic manipulators with geometric path constraints. IEEE Transactions on Automatic Control, 30(6), 531–541.CrossRefzbMATHGoogle Scholar
  40. Sprunk, C., Lau, B., Pfaff, P., & Burgard, W. (2011). Online generation of kinodynamic trajectories for non-circular omnidirectional robots. In IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
  41. Sprunk, C., Röwekämper, J., Parent, G., Spinello, L., Tipaldi, G. D., Burgard, W., et al. (2015). An experimental protocol for benchmarking robotic indoor navigation. In M. A. Hsieh, O. Khatib & V. Kumar (Eds.), Experimental Robotics, Springer Tracts in Advanced Robotics (Vol. 109, pp. 487–504). Springer International Publishing. doi: 10.1007/978-3-319-23778-7_32.
  42. Şucan, I. A., Moll, M., & Kavraki, L. E. (2012). The Open Motion Planning Library. IEEE Robotics & Automation Magazine, 19(4), 72–82
  43. Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 128(1), 99–141.CrossRefzbMATHGoogle Scholar
  44. Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge, MA: MIT Press.zbMATHGoogle Scholar
  45. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., et al. (2006). Stanley: The robot that won the darpa grand challenge. Journal of Field Robotics, 23(9), 661–692.CrossRefGoogle Scholar
  46. Tipaldi, G.D., Spinello, L., & Burgard, W. (2013). Geometrical flirt phrases for large scale place recognition in 2d range data. In IEEE Interntaional Conference on Robotics and Automation (ICRA).Google Scholar
  47. Tipaldi, G. D., Braun, M., & Arras, K. O. (2014). Flirt: Interest regions for 2d range data with applications to robot navigation. Experimental Robotics (pp. 695–710). Berlin: Springer.CrossRefGoogle Scholar
  48. Tomatis, N. (2011). Bluebotics: Navigation for the clever robot [Entrepreneur]. IEEE Robotics Automation Magazine, 18(2), 14–16.CrossRefGoogle Scholar
  49. Watanabe, K. (1998). Control of an omnidirectional mobile robot. In Proceedings of International Conference on Knowledge-Based Intelligent Electronic Systems.Google Scholar
  50. Werling, M., & Gröll, L. (2008). Low-level controllers realizing high-level decisions in an autonomous vehicle. In IEEE Intelligent Vehicles Symposium.Google Scholar
  51. Wurman, P. R., D’Andrea, R., & Mountz, M. (2008). Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Magazine, 29(1), 9.Google Scholar
  52. Yang, Y., & Brock, O. (2010). Elastic roadmaps-motion generation for autonomous mobile manipulation. Autonomous Robots, 28(1), 113–130.CrossRefGoogle Scholar
  53. Ziegler, J., & Stiller, C. (2009). Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  54. Ziegler, J., Werling, M., Schröder, J. (2008). Navigating car-like robots in unstructured environments using an obstacle sensitive cost function. In IEEE Intelligent Vehicles Symposium (IV 08).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Christoph Sprunk
    • 1
  • Boris Lau
    • 1
  • Patrick Pfaff
    • 2
  • Wolfram Burgard
    • 1
  1. 1.Department of Computer ScienceUniversity of FreiburgFreiburg im BreisgauGermany
  2. 2.KUKA Laboratories GmbHAugsburgGermany

Personalised recommendations