Autonomous Robots

, Volume 41, Issue 3, pp 743–758 | Cite as

AssistOn-Ankle: a reconfigurable ankle exoskeleton with series-elastic actuation

  • Ahmetcan Erdogan
  • Besir Celebi
  • Aykut Cihan Satici
  • Volkan Patoglu
Article

Abstract

We present the kinematics, optimal dimensional synthesis, series-elastic actuation, control, characterization and user evaluation of AssistOn-Ankle, a reconfigurable, powered exoskeleton for ankle rehabilitation. AssistOn-Ankle features reconfigurable kinematics for delivery of both range of motion (RoM)/strengthening and balance/proprioception exercises. In particular, through lockable joints, the underlying kinematics can be configured to either a self-aligning parallel mechanism that can naturally cover the whole RoM of the human ankle, or another parallel mechanism that can support the ground reaction forces/torques transferred to the ankle. Utilizing a single device to treat multiple phases of treatment is advantageous for robotic rehabilitation, since not only does it decrease the device cost and help with the space requirements, but also shorten the time it takes for patients to familiarize with the device. Bowden cable-based series-elastic actuation of AssistOn-Ankle allows for a remote placement of the motors/drivers to result in a compact design with low apparent inertia, while also enabling high-fidelity force/impedance control and active backdriveability of the device.

Keywords

Rehabilitation robotics Ankle exoskeleton Reconfigurable mechanisms Series elastic actuation 

References

  1. Agrawal, A., Banala, S. K., Agrawal, S. K., & Binder-Macleod, S. A. (2005). Design of a two degree-of-freedom ankle-foot orthosis for robotic rehabilitation. In IEEE international conference on rehabilitation robotics (pp. 41–44).Google Scholar
  2. Bharadwaj, K., & Sugar, T. (2006). Kinematics of a robotic gait trainer for stroke rehabilitation. In IEEE international conference on robotics and automation (pp. 3492–3497).Google Scholar
  3. Blaya, J. A., & Herr, H. (2004). Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(1), 24–31.CrossRefGoogle Scholar
  4. Carberry, J., Hinchly, G., Buckerfield, J., Tayler, E., Burton, T., Madgwick, S., & Vaidyanathan, R. (2011). Parametric design of an active ankle foot orthosis with passive compliance. In International symposium on computer-based medical systems (pp. 1–6).Google Scholar
  5. Cenciarini, M., & Dollar, A. M. (2011). Biomechanical considerations in the design of lower limb exoskeletons. In IEEE international conference on rehabilitation robotics (pp. 1–6).Google Scholar
  6. Dai, J. S., Zhao, T., & Nester, C. (2004). Sprained ankle physiotherapy based mechanism synthesis and stiffness analysis of a robotic rehabilitation device. Autonomous Robots, 16(2), 207–218.CrossRefGoogle Scholar
  7. Das, I., & Dennis, J. E. (1996). Normal-boundary intersection: A new method for generating the pareto surface in nonlinear multi-criteria optimization problems. SIAM Journal on Optimization, 8(3), 631–665.CrossRefMATHGoogle Scholar
  8. Department of Defence U. (1991). Military handbook anthropometry of U.S. military personnel (metric). DOD-HDBK-743A.Google Scholar
  9. Erdogan, A., Satici, A., & Patoglu, V. (2009). Design of a reconfigurable force feedback ankle exoskeleton for physical therapy. In ASME/IFToMM international conference on reconfigurable mechanisms and robots (pp. 400–408).Google Scholar
  10. Erdogan, A., Satici, A. C., & Patoglu, V. (2011). Passive velocity field control of a forearm-wrist rehabilitation robot. In International conference on rehabilitation robotics (pp. 1–8).Google Scholar
  11. Girone, M., Burdea, G., & Bouzit, M. (1999). The Rutgers ankle orthopedic rehabilitation interface. In ASME haptics symposium (Vol. 67, pp. 305–312).Google Scholar
  12. Gordon, K. E., & Ferris, D. P. (2007). Learning to walk with a robotic ankle exoskeleton. Journal of Biomechanics, 40(12), 2636–2644.CrossRefGoogle Scholar
  13. Gosselin, C., & Angeles, J. (1991). A global performance index for the kinematic optimization of robotic manipulators. Journal of Mechanical Design, 113(3), 220–226.CrossRefGoogle Scholar
  14. Gupta, A., & O’Malley, M. K. (2006). Design of a haptic arm exoskeleton for training and rehabilitation. IEEE Transactions on Mechatronics, 11(3), 280–289.CrossRefGoogle Scholar
  15. Gupta, A., Patoglu, V., O’Malley, M. K., & Burgar, C. M. (2008). Design, control and performance of RiceWrist: A force feedback wrist exoskeleton for rehabilitation and training. International Journal of Robotics Research, Special Issue on Machines for Human Assistance and Augmentation, 27(2), 233–251.Google Scholar
  16. Isman, R., & Inman, V. (1969). Anthropometric studies of the human foot and ankle. Bulletin of Prosthesis Research, 10–11, 97–129.Google Scholar
  17. Jamwal, P., Xie, S., Hussain, S., & Parsons, J. (2014). An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE/ASME Transactions on Mechatronics, 19(1), 64–75.CrossRefGoogle Scholar
  18. Khanna, I., Roy, A., Rodgers, M. M., Krebs, H. I., Macko, R. M., & Forrester, L. W. (2010). Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke. Journal of NeuroEngineering and Rehabilitation, 7(1), 23.CrossRefGoogle Scholar
  19. Kwakkel, G., Kollen, B. J., & Krebs, H. I. (2008). Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabilitation and Neural Repair, 22(2), 111–121.Google Scholar
  20. Lee, K. M., & Shah, D. K. (1988). Kinematic analysis of a three degrees-of-freedom in-parallel actuated manipulator. IEEE Transactions on Robotics and Automation, 4(3), 354–360.CrossRefGoogle Scholar
  21. Liu, C. H., & Cheng, S. (2004). Direct singular positions of 3RPS parallel manipulators. ASME Journal of Mechanical Design, 126(6), 1006–1016.CrossRefGoogle Scholar
  22. Liu, G., Gao, J., Yue, H., Zhang, X., & Lu, G. (2006). Design and kinematics analysis of parallel robots for ankle rehabilitation. In IEEE/RSJ international conference on intelligent robots and systems (pp. 253–258).Google Scholar
  23. Lopez, R., Aguilar-Sierra, H., Salazar, S., & Lozano, R. (2013). Model and control of the elltio with two degrees of freedom. In International conference on system theory, control and computing (pp. 305–310).Google Scholar
  24. Lum, P. S., Mulroy, S., Amdur, R. L., Requejo, P., Prilutsky, B. I., & Dromerick, A. W. (2009). Gains in upper extremity function after stroke via recovery or compensation: Potential differential effects on amount of real-world limb use. Topics in Stroke Rehabilitation, 16(4), 237–253.CrossRefGoogle Scholar
  25. Malosio, M., Caimmi, M., Ometto, M., & Tosatti, L. M. (2014). Ergonomics and kinematic compatibility of PKankle, a fully-parallel spherical robot for ankle-foot rehabilitation. In IEEE RAS EMBS international conference on biomedical robotics and biomechatronics (pp. 497–503).Google Scholar
  26. Mattacola, C., & Dwyer, M. (2002). Rehabilitation of the ankle after acute sprain or chronic instability. Journal of Athletic Training, 37(4), 413–429.Google Scholar
  27. Mehrholz, J., Platz, T., Kugler, J., & Pohl, M. (2009). Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Stroke, 40, e292–e293.CrossRefGoogle Scholar
  28. Merlet, J. (2006). Parallel robots (2nd ed.). New York: Springer.MATHGoogle Scholar
  29. Nourelfath, M., Ait-kadi, D., & Soro, I. (2002). Optimal design of reconfigurable manufacturing systems. In IEEE international conference on systems, man and cybernetics (Vol. 3, p. 6).Google Scholar
  30. Park, Y. L., Chen, B., Young, D., Stirling, L., Wood, R. J., Goldfield, E., & Nagpal, R. (2011). Bio-inspired active soft orthotic device for ankle foot pathologies. In IEEE/RSJ international conference on intelligent robots and systems (pp. 4488–4495).Google Scholar
  31. Prange, G. B., Jannink, M. J., Groothuis-Oudshoorn, C. G., Hermens, H. J., & Ijzerman, M. J. (2006). Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. Journal of Rehabilitation Research and Development, 43(2), 171–184.CrossRefGoogle Scholar
  32. Pratt, G. A., & Williamson, M. M. (1995). Series elastic actuators. IEEE International Conference on Intelligent Robots and Systems, 1, 399–406.Google Scholar
  33. Rigoni, E., & Poles, S. (2005). NBI and MOGA-II, two complementary algorithms for multi-objective optimizations. In Practical approaches to multi-objective optimization, dagstuhl seminar proceedings.Google Scholar
  34. Roy, A., Krebs, H., Patterson, S., Judkins, T., Khanna, I., Forrester, L., Macko, R., & Hogan, N. (2007). Measurement of human ankle stiffness using the anklebot. In IEEE International conference on rehabilitation robotics (pp. 356–363).Google Scholar
  35. Saglia, J., Tsagarakis, N., Dai, J., & Caldwell, D. (2013). Control strategies for patient-assisted training using the ankle rehabilitation robot (arbot). IEEE ASME Transactions on Mechatronics, 18, 1799–1808.CrossRefGoogle Scholar
  36. Satici, A. C., Erdogan, A., & Patoglu, V. (2009). Design of a reconfigurable ankle rehabilitation robot and its use for the estimation of the ankle impedance. In: IEEE international conference on rehabilitation robotics (pp. 257–264).Google Scholar
  37. Schiele, A., & van der Helm, F. (2006). Kinematic design to improve ergonomics in human machine interaction. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(4), 456–469.CrossRefGoogle Scholar
  38. Sensinger, J., & Weir, R. (2006). Improvements to series elastic actuators. In IEEE international conference on mechatronic and embedded systems and applications (pp. 1–7).Google Scholar
  39. Setchi, R. M., & Lagos, N. (2004). Reconfigurability and reconfigurable manufacturing systems state-of-the-art review. In IEEE international conference on industrial informatics (pp. 529–535).Google Scholar
  40. Shorter, K. A., Li, Y., Morris, E. A., Kogler, G. F., & Hsiao-Wecksler, E. T. (2011). Experimental evaluation of a portable powered ankle-foot orthosis. In International Conference of the IEEE engineering in medicine and biology society (pp. 624–627).Google Scholar
  41. Stienen, A., Hekman, E., van der Helm, F., & van der Kooij, H. (2009). Self-aligning exoskeleton axes through decoupling of joint rotations and translations. IEEE Transactions on Robotics, 25(3), 628–633.CrossRefGoogle Scholar
  42. Stocco, L., Salcudean, S. E., & Sassani, F. (1998). Fast constrained global minimax optimization of robot parameters. Robotica, 16(6), 595–605.CrossRefGoogle Scholar
  43. Syrseloudis, C. E., Emiris, I. Z., Maganaris, C. N., & Lilas, T. E. (2008). Design framework for a simple robotic ankle evaluation and rehabilitation device. In IEEE international conference EMBS.Google Scholar
  44. Tagliamonte, N. L., & Accoto, D. (2014). Passivity constraints for the impedance control of series elastic actuators. IMechE Part I: Journal of Systems and Control Engineering, 228(3), 138–153.Google Scholar
  45. Unal, R., & Patoglu, V. (2008a). Optimal dimensional synthesis of a dual purpose haptic exoskeleton. In M. Ferre (Ed.), Haptics: Perception, devices and scenarios, lecture notes in computer science (Vol. 5024, pp. 529–535). Berlin: Springer.CrossRefGoogle Scholar
  46. Unal, R., & Patoglu, V. (2008b). Optimal dimensional synthesis of force feedback lower arm exoskeletons. In IEEE RAS EMBS international conference on biomedical robotics and biomechatronics (pp. 329–334).Google Scholar
  47. Unal, R., Kiziltas, G., & Patoglu, V. (2008a). A multi-criteria design optimization framework for haptic interfaces. In International symposium on haptic interfaces for virtual environment and teleoperator systems (pp. 231–238).Google Scholar
  48. Unal, R., Kiziltas, G., & Patoglu, V. (2008b). Multi-criteria design optimization of parallel robots. In IEEE conference on robotics, automation and mechatronics (pp. 112–118).Google Scholar
  49. Veneman, J. F. (2007). Design and evaluation of the gait rehabilitation robot LOPES. PhD thesis, University of Twente, Enschede.Google Scholar
  50. Yoon, J. (2005). A new family of hybrid 4-DoF parallel mechanisms with two platforms and its application to a footpad device. Journal of Robotic Systems, 22(5), 287–298.CrossRefMATHGoogle Scholar
  51. Yoon, J., & Ryu, J. (2001). Design, fabrication, and evaluation of a new haptic device using a parallel mechanism. IEEE Transactions on Mechatronics, 6(3), 221–233.CrossRefGoogle Scholar
  52. Yoon, J., Ryu, J., & Lim, K. (2006). A novel reconfigurable ankle rehabilitation robot for various exercise modes. Journal of Robotic Systems (currently Journal of Field Robotics), 22(1), 15–33.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ahmetcan Erdogan
    • 1
  • Besir Celebi
    • 1
  • Aykut Cihan Satici
    • 1
  • Volkan Patoglu
    • 1
  1. 1.Faculty of Engineering and Natural SciencesSabancı UniversityIstanbulTurkey

Personalised recommendations