Advertisement

Active target search for high dimensional robotic systems

Abstract

When a robotic visual servoing/tracking system loses sight of the target, the servo fails due to loss of input. To resolve this problem a search method, namely a lost target search (LTS) which will generate efficient actions to bring the target back into the camera field of view (FoV) as soon as possible, is required. For high dimensional platforms, like a camera-mounted manipulator or an eye-in-hand system, such a search must address the difficult challenge of generating efficient actions in an online manner while avoiding kinematic constraints. In this work, we utilize the latest available information from the target just prior to leaving the FoV to initiate an optimal online search. We explain various features of our overall LTS algorithm and provide simulation comparisons with common methods existing in the literature. Finally, we implement and demonstrate the capabilities of our general algorithm on a laboratory scale 7 degree of freedom (DoF) eye-in-hand system tracking a fast moving target.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Andreopoulos, A. & Tsotsos, J. K. (2009). A theory of active object localization. In 12th IEEE international conference on computer vision (pp. 903–910).

  2. Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174–188.

  3. Aydemir, A., Pronobis, A., Moritz, G., & Jensfelt, P. (2013). Active visual object search in unknown environments using uncertain semantics. IEEE Transactions on Robotics, 29(4), 986–1002.

  4. Bertuccelli, L. F., & How, J. P. (2006). Search for dynamic targets with uncertain probability maps. In American control conference (pp. 737–742).

  5. Binney, J. & Sukhatme, G. S. (2012). Branch and bound for informative path planning. In IEEE international conference on robotics and automation (pp. 2147–2154).

  6. Bourgault, F., Göktogan, A., Furukawa, T., & Durrant-whyte, H. F. (2004). Coordinated search for a lost target in a Bayesian world. Advanced Robotics, 18(10), 979–1000.

  7. Cabanillas, J., Morales, E. F. & Sucar, L. E. (2010). An efficient strategy for fast object search considering the robot’s perceptual limitations. In Advances in artificial intelligence—IBERAMIA 2010. Lecture notes computer science (pp. 552–561).

  8. Cen, G., Matsuhira, N., Hirokawa, J., Ogawa, H., & Hagiwara, I. (2009). New entropy-based adaptive particle filter for mobile robot localization. Advanced Robotics, 23(12–13), 1761–1778.

  9. Chesi, G., Hashimoto, K., Prattichizzo, D. and Vicino, A. (2003). A switching control law for keeping features in the field of view in eye-in-hand visual servoing. In IEEE International conference on robotics and automation (pp. 3929–3934).

  10. Chung, T. H., & Burdick, J. W. (2012). Analysis of search decision making using probabilistic search strategies. IEEE Transactions on Robotics, 28(1), 132–144.

  11. Chung, C. F., & Furukawa, T. (2009). Coordinated Pursuer Control using Particle Filters for Autonomous Search-and-Capture. Rob. Auton. Syst., 57(6–7), 700–711.

  12. Chung, T. H., Hollinger, Ga, & Isler, V. (2011). Search and pursuit-evasion in mobile robotics. Autonomous Robots, 31(4), 299–316.

  13. Dickinson, S. J., Christensen, H. I., Tsotsos, J., & Olofsson, G. (1994). Active object recognition integrating attention and viewpoint control. In European conference on computer vision (pp. 2–14).

  14. Doucet, A., de Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo methods in practice. Berlin: Springer.

  15. Espinoza, J., Sarmiento, A., Murrieta-Cid, R., & Hutchinson, S. (2011). Motion planning strategy for finding an object with a mobile manipulator in three-dimensional environments. Advanced Robotics, 25(13–14), 1627–1650.

  16. Gerkey, B. P., Gordon, G., & Thrun, S. (2006). Visibility-based pursuit-evasion with limited field of view. The International Journal of Robotics Research, 25(4), 299–315.

  17. Geyer, C. (2008). Active target search from UAVs in urban environments. In IEEE International conference on robotics and automation (pp. 2366–2371).

  18. Hollinger, G., Kehagias, A., & Singh, S. (2010). GSST: Anytime Guaranteed Search. Auton. Robots, 29(1), 99–118.

  19. Hollinger, G., Singh, S., Djugash, J., & Kehagias, A. (2009). Efficient multi-robot search for a moving target. The International Journal of Robotics Research, 28(2), 201–219.

  20. Hollinger, G. A., & Sukhatme, G. S. (2014). Sampling-based robotic information gathering algorithms. The International Journal of Robotics Research, 33(9), 1271–1287.

  21. Kobilarov, M., Marsden, J. E., & Sukhatme, G. S. (2011). Global estimation in constrained environments. The International Journal of Robotics Research, 31(1), 24–41.

  22. Kolling, A., Kleiner, A., Sycara, K. & Lewis, M. (2010). Pursuit-evasion in 2.5D based on team-visibility. In IEEE/RSJ international conference on intelligent robots and systems (pp. 4610–4616).

  23. Koopman, B. O. (1979). Search and its optimization. American Mathematical Monthly, 86(7), 527–540.

  24. Kragi, D. (2001). Visual servoing for manipulation: Robustness and integration issues. PhD Thesis, Numerical Analysis and Computer Science, Royal Institute of Technology.

  25. Kragic, D., & Vincze, M. (2009). Vision for robotics. Foundations and Trends in Robotics, 1(1), 1–78.

  26. Lau, H., Huang, S., & Dissanayake, G. (2005). Optimal search for multiple targets in a built environment. In IEEE/RSJ international conference on intelligent robots and systems (pp. 3740–3745).

  27. Lau, H., Huang, S., & Dissanayake, G. (2006). Probabilistic search for a moving target in an indoor environment. In IEEE/RSJ international conference on intelligent robots and systems (pp. 3393–3398).

  28. Lavis, B., Furukawa, T., & Durrant Whyte, H. F. (2008). Dynamic space reconfiguration for Bayesian search and tracking with moving targets. Autonomous Robots, 24(4), 387–399.

  29. Lin, L., Goodrich, M. A., & Member, S. (2014). Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning. IEEE Transactions on Cybernetics, 44(12), 2532–2544.

  30. Ma, J., Chung, T. H., & Burdick, J. (2011). A probabilistic framework for object search with 6-DOF pose estimation. The International Journal of Robotics Research, 30(10), 1209–1228.

  31. Martinez-Cantin, R., de Freitas, N., Brochu, E., Castellanos, J., & Doucet, A. (2009). A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot. Autonomous Robots, 27(2), 93–103.

  32. Mattingley, J., Wang, Y., & Boyd, S. (2010). Code generation for receding horizon control. In IEEE international symposium on computer-aided control system design (pp. 985–992).

  33. Murrieta-Cid, R., Tovar, B., & Hutchinson, S. (2005). A sampling-based motion planning approach to maintain visibility of unpredictable targets. Autonomous Robots, 19(3), 285–300.

  34. Nelson, B. J., & Khosla, P. K. (1995). Strategies for increasing the tracking region of an eye-in-hand system by singularity and joint limit avoidance. The International Journal of Robotics Research, 14(3), 255–269.

  35. Niedfeldt, P., Beard, R., Morse, B., & Pledgie, S. (2010). Integrated sensor guidance using probability of object identification. In American control conference (pp. 788–793).

  36. Panagou, D., & Kumar, V. (2014). Cooperative visibility maintenance for leader-follower formations in obstacle environments. IEEE Transactions on Robotics, 30(4), 831–844.

  37. Radmard, S. & Croft, E. A. (2011). Approximate recursive bayesian filtering methods for robot visual search. In IEEE international conference on robotics and biomimetics (pp. 2067–2072).

  38. Ramirez, J. P., Doucette, E. A., Curtis, J. W., & Gans, N. (2014). Moving target acquisition through state uncertainty minimization. In American control conference (pp. 3425–3430).

  39. Ryan, A., & Hedrick, J. K. (2010). Particle filter based information-theoretic active sensing. Robotics and Autonomous Systems, 58(5), 574–584.

  40. Shubina, K., & Tsotsos, J. K. (2010). Visual search for an object in a 3D environment using a mobile robot. Computer Vision and Image Understanding, 114(5), 535–547.

  41. Simon, D. J. (2006). Optimal state estimation: Kalman, H infinity, and nonlinear approaches. London: Wiley.

  42. Sommerlade, E. (2010). Active visual scene exploration. PhD Thesis, Department of Engineering Science, University of Oxford.

  43. Stone, L. D. (1975). Theory of optimal search. London: Academic Press.

  44. Tian, X., Bar-Shalom, Y., & Pattipati, K. R. (2008). Multi-step look-ahead policy for autonomous cooperative surveillance by UAVs in hostile environments. In 47th IEEE conference on decision and control (pp. 2438–2443).

  45. Tisdale, J., Kim, Z., & Hedrick, J. K. (2009). Autonomous UAV path planning and estimation. IEEE Robotics and Automation Magazine, 16(2), 35–42.

  46. Torabi, L., & Gupta, K. (2012). An autonomous six-DOF eye-in-hand system for in situ 3D object modeling. The International Journal of Robotics Research, 31(1), 82–100.

  47. Tsai, C. Y., Song, K. T., Dutoit, X., Van Brussel, H., & Nuttin, M. (2009). Robust visual tracking control system of a mobile robot based on a dual-Jacobian visual interaction model. Robotics and Autonomous Systems, 57(6–7), 652–664.

  48. Vander Hook, J., Tokekar, P., & Isler, V. (2014). Cautious greedy strategy for bearing-only active localization: Analysis and field experiments. Journal of Field Robotics, 31(2), 296–318.

  49. Webb, S., & Furukawa, T. (2008). Belief-driven manipulator visual servoing for less controlled environments. Advanced Robotics, 22(5), 547–572.

  50. Wilkes, D. & Tsotsos, J. K. (1992). Active object recognition. In IEEE conference on computer vision and pattern recognition (pp. 136–141).

  51. Wong, E.-M., Bourgault, F., & Furukawa, T. (2005). Multi-vehicle Bayesian search for multiple lost targets. In IEEE international conference on robotics and automation (pp. 3169–3174).

  52. Ye, Y., & Tsotsos, J. K. (1999). Sensor planning for 3D object search. Computer Vision and Image Understanding, 73(2), 145–168.

  53. Ye, Y., Tsotsos, J. K., Watson, I. B. M. T. J., Heights, Y., & York, N. (2001). A complexity-level analysis of the sensor planning task for object search. Computational Intelligence, 17(4), 605–620.

  54. Zhang, Y., Shen, J., & Gans, N. (2014). Real-time optimization for eye-in-hand visual search. IEEE Transactions on Robotics, 30(2), 325–339.

  55. Zhou, K., Member, S., & Roumeliotis, S. I. (2008). Optimal motion strategies for range-only constrained multisensor target tracking. IEEE Transactions on Robotics, 24(5), 1168–1185.

Download references

Acknowledgments

This work was supported by NSERC/Discovery Grants Program, RGPIN 181032-12.

Author information

Correspondence to Sina Radmard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 19983 KB)

Supplementary material 1 (mp4 19983 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Radmard, S., Croft, E.A. Active target search for high dimensional robotic systems. Auton Robot 41, 163–180 (2017). https://doi.org/10.1007/s10514-015-9539-8

Download citation

Keywords

  • Lost target search
  • High dimensional robot
  • Online sensor planning