Autonomous Robots

, Volume 41, Issue 2, pp 293–309 | Cite as

Vision-based maze navigation for humanoid robots

  • Antonio Paolillo
  • Angela Faragasso
  • Giuseppe Oriolo
  • Marilena Vendittelli
Article

Abstract

We present a vision-based approach for navigation of humanoid robots in networks of corridors connected through curves and junctions. The objective of the humanoid is to follow the corridors, walking as close as possible to their center to maximize motion safety, and to turn at curves and junctions. Our control algorithm is inspired by a technique originally designed for unicycle robots that we have adapted to humanoid navigation and extended to cope with the presence of turns and junctions. In addition, we prove here that the corridor following control law provides asymptotic convergence of robot heading and position to the corridor bisector even when the corridor walls are not parallel. A state transition system is designed to allow navigation in mazes of corridors, curves and T-junctions. Extensive experimental validation proves the validity and robustness of the approach.

Keywords

Vision-based navigation Humanoid robots Visual control 

Supplementary material

Supplementary material 1 (mp4 20750 KB)

References

  1. Back, I., Kallio, J., & Makela, K. (2012). Enhanced map-based indoor navigation system of a humanoid robot using ultrasound measurements. Intelligent Control and Automation, 3(2), 111–116.CrossRefGoogle Scholar
  2. Baier, C., & Katoen, J. P. (2008). Principles of model checking. Cambridge, MA: MIT Press.MATHGoogle Scholar
  3. Cherubini, A., Chaumette, F., & Oriolo, G. (2008). An image-based visual servoing scheme for following paths with nonholonomic mobile robots. In 10th IEEE international conference on control, automation, robotics and vision (pp. 108–113).Google Scholar
  4. Courty, N., Marchand, E., & Arnaldi, B. (2001). Through-the-eyes control of a virtual humanoid. In The fourteenth conference on computer animation (pp. 74–83).Google Scholar
  5. Cyberbotics-Webots. (2012). Webots: Robot simulation software. http://www.cyberbotics.com.
  6. Delfin, J., Becerra, H., & Arechavaleta, G. (2014). Visual path following using a sequence of target images and smooth robot velocities for humanoid navigation. In 14th IEEE-RAS international conference on humanoid robots (pp. 354–359).Google Scholar
  7. Delgado-Galvan, J., Navarro-Ramirez, A., Nunez-Varela, J., Puente-Montejano, C., & Martinez-Perez, F. (2015). Vision-based humanoid robot navigation in a featureless environment. In J. A. Carrasco-Ochoa, J. F. Martínez-Trinidad, J. H. Sossa-Azuela, J. A. Olvera López, & F. Famili (Eds.), Pattern recognition (Vol. 9116, pp. 169–178), Lecture Notes in Computer Science. New York: Springer.Google Scholar
  8. Dune, C., Herdt, A., Stasse, O., Wieber, P. B., Yokoi, K, & Yoshida, E. (2010). Cancelling the sway motion of dynamic walking in visual servoing. In IEEE/RSJ international conference on intelligent robots and systems (pp. 3175–3180).Google Scholar
  9. Dune, C., Herdt, A., Marchand, E., Stasse, O., Wieber, P. B., & Yoshida, E. (2011). Vision based control for humanoid robots. In IROS workshop on visual control of mobile robots (pp. 19–26).Google Scholar
  10. Faragasso, A., Oriolo, G., Paolillo, A., & Vendittelli, M. (2013). Vision-based corridor navigation for humanoid robots. In IEEE international conference on robotics and automation (pp. 3190–3195).Google Scholar
  11. Garcia, M., Stasse, O., & Hayet, J.B. (2014). Vision-driven walking pattern generation for humanoid reactive walking. In IEEE international conference on robotics and automation (pp. 216–221).Google Scholar
  12. Garcia, M., Stasse, O., Hayet, J. B., Dune, C., Esteves, C., & Laumond, J. P. (2015). Vision-guided motion primitives for humanoid reactive walking: Decoupled versus coupled approaches. The International Journal of Robotics Research, 34(4–5), 402–419.CrossRefGoogle Scholar
  13. George, L., & Mazel, A. (2013). Humanoid robot indoor navigation based on 2D bar codes: Application to the NAO robot. In 13th IEEE-RAS international conference on humanoid robots.Google Scholar
  14. Hartley, R. I., & Zisserman, A. (2004). Multiple view geometry in computer vision. Cambridge: Cambridge University Press.CrossRefMATHGoogle Scholar
  15. Ido, J., Shimizu, Y., Matsumoto, Y., & Ogasawara, T. (2009). Indoor navigation for a humanoid robot using a view sequence. The International Journal of Robotics Research, 28(2), 315–325.CrossRefGoogle Scholar
  16. Kahlil, H. K. (2001). Nonlinear systems. New York: Prentice Hall.Google Scholar
  17. Kuffner, Jr. J. J., Nishiwaki, K., Kagami, S., Inaba, M., & Inoue, H. (2001). Footstep planning among obstacles for biped robots. In IEEE/RSJ international conference on intelligent robots and systems (pp. 500–505).Google Scholar
  18. Laganière, R. (2011). OpenCV 2 computer vision application programming cookbook: Over 50 recipes to master this library of programming functions for real-time computer vision. Singapore: Packt Publishing Ltd.Google Scholar
  19. Lutz, C., Atmanspacher, F., Hornung, A., & Bennewitz, M. (2012). Nao walking down a ramp autonomously. In IEEE/RSJ international conference on intelligent robots and systems (pp. 5169–5170).Google Scholar
  20. Ma, Y., Soatto, S., Kosecka, J., & Sastry, S. S. (2003). An invitation to 3-D vision: From images to geometric models. New York: Springer.MATHGoogle Scholar
  21. Maier, D., Hornung, A., & Bennewitz, M. (2012). Real-time navigation in 3D environments based on depth camera data. In 12th IEEE-RAS international conference on humanoid robots (pp. 692–697).Google Scholar
  22. Maier, D., Stachniss, C., & Bennewitz, M. (2013). Vision-based humanoid navigation using self-supervised obstacle detection. International Journal of Humanoid Robotics, 10(02), 1350,016.CrossRefGoogle Scholar
  23. Matsumoto, Y., Ikeda, K., Inaba, M., & Inoue, H. (2000). Exploration and navigation in corridor environment based on omni-view sequence. In IEEE/RSJ international conference on intelligent robots and systems (pp. 1505–1510).Google Scholar
  24. Mombaur, K., Truong, A., & Laumond, J. P. (2010). From human to humanoid locomotion—an inverse optimal control approach. Autonomous Robots, 28, 369–383.CrossRefGoogle Scholar
  25. Ohnishi, N., & Imiya, A. (2013). Appearance-based navigation and homing for autonomous mobile robot. Image and Vision Computing, 31(6), 511–532.CrossRefGoogle Scholar
  26. OpenCV. (2012). Open source computer vision. http://opencv.org/.
  27. Oriolo, G., Paolillo, A., Rosa, L., & Vendittelli, M. (2013). Vision-based trajectory control for humanoid navigation. In IEEE-RAS international conference on humanoid robots (pp. 118–123).Google Scholar
  28. Oriolo, G., Paolillo, A., Rosa, L., & Vendittelli, M. (2015). Huma-noid odometric localization integrating kinematic, inertial and visual information. Autonomous Robots. doi:10.1007/s10514-015-9498-0.
  29. Park, Y., & Suh, H. (2010). Predictive visual recognition of types of structural corridor landmarks for mobile robot navigation. In 19th IEEE international symposium on robot and human interactive communication (pp. 391–396).Google Scholar
  30. Sabe, K., Fukuchi, M., Gutmann, J. S., Ohashi, T., Kawamoto, K., & Yoshigahara, T. (2004). Obstacle avoidance and path planning for humanoid robots using stereo vision. In IEEE international conference on robotics and automation (pp. 592–597).Google Scholar
  31. Tello Gamarra, D., Bastos-Filho, T., & Sarcinelli-Filho, M. (2005). Controlling the navigation of a mobile robot in a corridor with redundant controllers. In IEEE international conference on robotics and automation (pp. 3844–3849).Google Scholar
  32. Toibero, J. M., Soria, C.M., Roberti, F., Carelli, R., & Fiorini, P. (2009). Switching visual servoing approach for stable corridor navigation. In 14th international conference on advanced robotics (pp. 1–6).Google Scholar
  33. Truong, T. V. A., Flavigne, D., Pettre, J., Mombaur, K., & Laumond, J. P. (2010). Reactive synthesizing of human locomotion combining nonholonomic and holonomic behaviors. In 3rd IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics (pp. 632–637).Google Scholar
  34. Vassallo, R., Schneebeli, H. J., & Santos-Victor, J. (2000). Visual servoing and appearance for navigation. Robotics and Autonomous Systems, 31(1–2), 87–97.CrossRefGoogle Scholar
  35. Wei, C., Xu, J., Wang, C., Wiggers, P., & Hindriks, K. (2014). An approach to navigation for the humanoid robot nao in domestic environments. In A. Natraj, S. Cameron, C. Melhuish, & M. Witkowski (Eds.), Towards autonomous robotic systems (pp. 298–310), Lecture Notes in Computer Science. Berlin, Heidelberg: Springer.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Antonio Paolillo
    • 1
  • Angela Faragasso
    • 2
  • Giuseppe Oriolo
    • 1
  • Marilena Vendittelli
    • 1
  1. 1.Dipartimento di Ingegneria Informatica, Automatica e GestionaleSapienza Università di RomaRomeItaly
  2. 2.Centre for Robotics Research Department of InformaticsKings College LondonLondonUK

Personalised recommendations